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Looking back, there are certain ideas that permeate my research.
Briefly put, my research has revolved around the ideas of
» describing and analyzing audio signals using parametric and
statistical models.
» posing and solving engineering problems in audio and acoustics
using optimization, linear algebra, and statistics.
In this talk, | would like to tell more about those ideas and what
can be achieved with them.

| will do this in the context of speech processing.
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» Parametric speech models have been around for many years
(e.g., linear prediction in the 70s, sinusoidal model in the 80s).

» Skeptics argue that the models are (always) wrong and that it is
not possible to estimate the model parameters well enough
under adverse conditions.

» Parametric models can, however, be used for many things and in
different ways.

» The harmonic model, for example, is a good model of
quasi-periodic signals, like voiced speech. It describes the signal
in terms of pitch, amplitudes, and phases.
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Motivation

All models are wrong; some models are useful. (G.

Box)
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Everything should be made as simple as possible, but no
simpler. (A. Einstein)
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Motivation

For every complex problem there is an answer that is clear,
simple, and wrong. (H. L. Mencken)
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Motivation

Methodology:

» Methods rooted in estimation theory.
» Based on parametric models of the signal of interest.

» Analysis of estimation and modeling problems as mathematical
problems.

Why parametric methods?

» They lead to robust, tractable methods whose properties can be
analyzed and understood.

» A full parametrization of the signal of interest is obtained.

» Back to basics... how can we hope to solve complicated
problems if we cannot solve the simple ones?
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Some interesting questions:

Under which conditions can a method be expected to work?
How does performance depend on the acoustic environment?
Is the method optimal (and what does optimal mean)?

How do we improve the method?

vV v . v v

Only possible to answer if assumptions are made explicit! Often the
assumptions are sufficient conditions but not necessary.

Non-parametric methods are hard to analyze and understand.
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Harmonic Model

The harmonic model is given by (forn=10,...,N —1)

x(n) =s(n) + e(n) =>_ ae" + e(n).

=1

Definitions:

s(n) is voiced speech

e(n) is the observation noise

wg is the fundamental frequency

Y1 = wol is the frequency of the /th harmonic
a; = Ae? is the complex amplitude

9=[wo A1 Aol
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The model can also be written as (with x(n) being a snapshot)

x(n) = s(n) +e(n) (2)
=Z(n)a+e(n) (3)
=2ZD"a + e(n) (4)
= Za(n) + e(n), (5)

with the following definitions:

x(n)=[x(n) --- x(n+M—-1)]7
2(w)=[16¥ ... goM-]T
Z=2z(wp) - 2(wol)]

D-— diag(e/woﬁe/wOZ’“.,e/woL)

a=[a ---a ]’
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The covariance matrix of x(n) is

R =E {x(n)x"(n)}. (6)
Written in terms of the harmonic model, we get

R =ZE {a(n)a"(n)} 2" + E {e(n)e"(n)} (7)
=2ZPZ" + Q, (8)

which is called the covariance matrix model. Note that often it is
assumed that Q = &2I.

P is the covariance matrix for the amplitudes, which can be shown to
be (under certain conditions)

P~ diag ([ A2 --- AZ]). 9)
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What's wrong with this model?
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It does not take non-stationarity into account

Background noise is rarely white (and not always Gaussian)
The model order is unknown and time-varying

Even if stationary, signals are not perfectly periodic

The model does not differentiate between background noise and
unvoiced speech

It is single-channel

Can this be dealt with? Does it matter?
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Estimating Parameters
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An estimate 0; of 6; (i.e., the ith element of 8 € RP) is unbiased if
E {é,} — 0, v0;, (10)

and the difference (if any) is referred to as the bias. The Cramér-Rao
lower bound (CRLB) is then given by

var(d;) > [17'(0)] , (11)

i’

where the Fisher Information Matrix (FIM) 1(8) is given by

o2 :
[I(H)],-, =—-E {(W} ) (12)

with In p(x; 8) being the log-likelihood function for x € CN.
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Parameter Estimation Bounds
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These depend on the following quantity:

PSNR = 101log;, Zi 12 [dB]
(o2

For colored noise, pre-whitening should be employed.

1))'
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Such bounds are useful for a number of reasons:

|

An estimator attaining the bound is optimal.

The bounds tell us how performance can be expected to depend
on various quantities.

The bounds can be used as benchmarks in simulations.
Provide us with “rules of thumb”.

v

v

v

Caveat emptor: The CRLB does not accurately predict the
performance of non-linear estimators under adverse conditions.

It is possible to compute exact CRLBs, where no asymptotic
approximations are used. These predict more complicated
phenomena.
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Parameter Estimation Bounds

It is possible to relate estimation errors to reconstruction errors. Let
the observed signal be given by

x=s(0)+e (17)

Suppose an estimate 6 of 6 is used to reconstruct the ith sample as
5; = sj(0), which can be approximated as

. H
si(0 + €) ~ si(0) + (03;0)) €. (18)

The mean squared error (MSE) is then

E{(si(0) ~ si(6+€)°} = (asjdf(:)>H E {ect) (02’(09)) . (19)
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Parameter Estimation Bounds

If a MLE is used (for sufficiently high N), then
e~ N(0,177(9)), (20)

where 1(9) is the FIM! For Gaussian signals with x ~ A/(s(8), Q)
where Q is the noise covariance matrix, the FIM is given by

0s"(0) ._,0s(0)
O = a0, Q 0m

The MSE can then be seen to be

E {(s,(e) —5i(0 + e))z} = (0229))H 1-'(9) (02(09)> . (22
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For Gaussian signals, the likelihood function is

1 _ _ HQ-1 B
p(x(n); 8) = me (x(n)—2a(n))" Q™" (x(n)—2Za(n)) (23)

If the noise is i.i.d., the likelihood of {x(n) ff;& can be written as

G—1
p({x(n)}:6) = ] p(x(n); 6). (24)
n=0

The log-likelihood function is £(8) = In p({x(n)}; #) and the maximum
likelihood estimator (MLE) is

6 = argmax £(#). (25)
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Maximum Likelihood Method
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For white Gaussian noise (Q = ¢?l) with M = N the log-likelihood
function is

£(6) = —NIn7 — Nin o2 —le Za|2. (26)

The concentrated MLE is given by

-1

&y = argmax L(wo) = argmaxx”z (z2"z) " z"x (27)
wo wo
N—1 2
~ arg max S x(nyereoln (28)
=1 | n—0

This can be computed using an FFT (i.e., using harmonic
summation)!
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Subspace Method

Recall that the model is
x(n) = Za(n) + e(n), (29)
and that the covariance matrix then is
R =E {x(n)x"(n)} = ZPZ" + 52, (30)
where ZPZ" has rank L and

P =diag ([ A7 --- AZ]).
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Let R = UAU" be the EVD of the R, and let G be formed as
G=[ugt - uy] (31)

i.e., from the eigenvectors u, corresponding to the M — L smallest
eigenvalues. Then we have that Z"G = 0.

By measuring the angles between subspaces, we can obtain an
estimate as

L
@o = argmin |Z7G|Z = argmin » ~ ||z"(wo!)G[3. (32)
0 “0 =

This maximizes the angles between the subspaces R(Z) and R(G).
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Let the output signal y(n) of a filter having coefficients h(n) be
defined as

y(n) = h(m)x(n— m) = h"x(n), (33)

with M < N and where h is a vector formed from {h(n)}. The output
power is then E {|y(n)[?} = h"Rh.
The filtered output can be seen to be

h"x(n) = h"zZD"a + h'e. (34)

If hZ =17 with1 =[1 --- 1]7 the voiced speech would pass
undistorted and the noise term he could be minimized!
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We would thus like to design a filter as

mhin h"Rh s.t.

hf'z=1T.
This has the solution

h=R'Z(Z"R'2)”"

1.
We can use this filter to estimate the pitch as

&o = argmax 1 (ZHFF1Z)71
wo

1. (37)
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Solving Problems
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A myriad of different pitch estimators exist, but very few have
been proposed for multiple channels except a few heuristic ones.

» We will now derive a method for multi-channel pitch estimation
based on a parametric model.

» The signals in the various channels share the same fundamental
frequency but can have different amplitudes, phases, and noise
characteristics.

» This means that the model allows for different conditions in the
various channels!
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The method operates on snapshots xx(n) € CY for the kth channel.

These are modeled as sums of sinusoids in Gaussian noise e, with
covariance Qy, i.e.,

xx(n) = Z(n)ax + ex(n), (38)
with ax = [ Ac1€/%1 ... A, €%t ]T. Let 6y be the parameter vector
for the kth channel. The likelihood function is then

1

b aef(ma Tex(n)
det(Qe) o (39)

p(Xk(n); Ox) =
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Multi-Channel Modeling

Signal Model
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If the deterministic part is stationary and ex(n) is i.i.d. over n and
independent over k, the combined likelihood is

K
1 _ S G eHmaed(n
p({xc(m}: {66}) =[] CeQy)C oo e (MAenm) - (40)
k=1

For simplicity, we assume that the noise is white in each channel but
has different o2, i.e., Qx = o2l.
The log-likelihood function then reduces to

K K
Inp({xc(n)}; {6x}) = =GM Y _In (o) = >

k=1 k=1 n=0
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The MLE of the amplitudes for channel k are

—1

G—-1 G—1
&y = <Z ZH(n)Z(n)> > ZH(mx(n). (42)
n=0 n=0

This can be used to form a noise variance estimate as
; G ; 6
A2 A 2 A 112
%k = G Z% lex(MII” = &z Z:O [xk(n) — Z(mag||®.  (43)

This yields the following log-likelihood for channel k at time n

Inp(xk(n); wo) = —MInT — MIn 5.
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For all n and k, this yields

K
Inp({Xk(n)};wo) = ~GMK Inw — GM>_ In 6. (44)
k=1

The maximum likelihood estimator (MLE) can finally be stated as

K
Go = argmin ) " In 7. (45)
“0 k=1
This estimator can then be approximated as

K
, 1
o = argmin > I <|xk2 ~ NZxk|2> : (46)
p

where xx = Xx,(0) for M = N. This can be computed using FFTs.
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Experiments
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Figure: Gross error rate for (left) symmetrical noise level and (right)
asymmetrical noise level (i.e., different noise levels).
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» The harmonic signal model has been used for noise reduction in
various ways, like the traditional comb filters.

» We have seen how adaptive and optimal filters can be used for
pitch estimation.

» The same principle can be used for finding noise reduction filters.

» Some interesting and well-known special cases can be obtained
from these filters.
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As we saw earlier, we get the following model when a filter h is
applied to the observed signal x(n):

3(n) = hx(n) = h"ZD"a + h'e. (47)
This comprises two terms:

» The filtered voiced speech h"ZD"a
» The filtered noise h'e

If hHZ =17 then h"ZD"a = Z,L:1 aie/~o" while E{|h"e[?} = h”Qh is
minimized, we have distortionless optimal noise reduction!
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A distortionless filter should have h"Z = 17 and should minimize the
residual noise, i.e.,

min h"Qh st Z"h =1 (48)
The solution can be shown to be

h=Q 'z (z*’éqz)*1 1. (49)
with Q being a particular noise covariance matrix estimate.

These filters are adaptive, optimal comb filters! Unlike the normally
used Wiener filter, these do not distort the desired signal.
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We seek to find a filter such that the MSE is minimized:

N—1 2

’
MSE:E :ZM:

n —1

—1

= Z\hH —a"w(n)?,

n:M 1

L
— Z a,e’“o’”

with w(n) = [ @«o1n ... glwoln ] " Solving for the amplitudes, we get
MSE = h" (R ( — GMw- 1G) 2 hHQh, (50)
where G = LN cw(n)xH(nyand W= L SN0 w(n)wH(n).

Thus we can estimate Q as Q = R — GFW-'G!
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Special cases:

» Setting W = | yields the usual noise covariance matrix estimate.
» Capon-like filters can be obtained from Q= R, ie.

h=R'Z (zH?Hz)*1 1.

Setting R = o2l yields h = Z (2"2) ' 1.

Noting that limy .. MZ (2"Z) ' = Z, we get h = 1Z1.

Binary masking can also be obtained using these principles.

v

v

v
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Figure: The original voiced speech signal and the estimated pitch.
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Figure: The extracted signal and the difference between the two signals, i.e.,
the part of the signal that was not extracted.
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Figure: The voiced speech signal of sources 1 and 2.
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Figure: The mixture of the two signals and the estimated pitch tracks for
source 1 (dashed) and 2 (solid).
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Figure: The estimate of sources 1 and 2 obtained from the mixture.
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» Parametric methods based on the harmonic model have proven
to overcoming the problems of correlation-based pitch estimation
methods.

» However, as mentioned earlier, there might be concerns the
stationarity within segments.

» To investigate whether this is a problem, we will take a closer
look at the harmonic chirp model and derive an estimator for
determining its parameters.
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For a segment of a speech signal with n=ng,...,ny + N — 1 the new
harmonic chirp model is given by

L
x(n)=>_ A" + e(n) (51)

=1

where

L is the number of harmonics (assumed known).

A, the th is the amplitude.

0:(n) is the instantaneous phase of the /th harmonic.
e(n) are the stochastic parts of the observed signal.
no is the start index.

vV v v v Yy



Mads Greesbell Christensen | Statistical Parametric Speech Processing

Non-Stationary Speech

Signal Model

<
%R yaiv®

The instantaneous phase 6,(-) is a continuous function of the
continuous variable t. It is given by

ot
0,(t) = / lwo(T)dT + @), (52)
J0O
where wq(t) is the time-varying pitch and ¢, is the phase of the /th
harmonic. The instantaneous frequency of the /th harmonic is then

wi(t) = de(;gt)

= lwo(t). (53)

In pitch estimation, it is most often assumed that the pitch is constant,
i.e., w(t) = lwg, which results in the harmonic model (HM).
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If the pitch is slowly and smoothly varying an appropriate model
would be wq(t) = apt + wp Which yields

1
0,(t) = E(MO/F + wolt + ¢y, (54)

where «q/ is then the chirp rate of the /th harmonic. We term o the
fundamental chirp rate.

The resulting model is called the harmonic chirp model (HCM).

We would like to jointly estimate ag and wg from x(n).
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Define a vector from the observed signal with np = —(N — 1)/2 as
x=[x(no) x(no+1) ... x(no+N-1)]. (55)
and a matrix as
Z = [2(wo, a0) 2Z(2wo,200) ... 2(Lwo,Lao)], (56)
with columns

z(/wo,,/ao):{e/(%%’”g*’*b’”o)  ei(baol(n N1 +wol(n+N-1)|
(57)
-1

For convenience, we introduce M., o, = Z (Z"Z)  Z".
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As before, the nonlinear least squares (NLS) estimator can be used:
{&o, @0} = arg min ||x — Z (ZHZ)71 ZMx|?. (58)
@0 ,Wo

We solve this iteratively as follows (with i being the iteration index).

First obtain an estimate dé” from @é”” fori=1,2,...as

al) = argmax {x”l‘laé, umx} ., (59)

(7))
and then update the estimate of the fundamental frequency, wq, as
o)) = argmax {XHI'IM0 Mx} . (60)
wo 70

This is then repeated for i =, 1,2, ... until convergence. We initialize
with o{” = 0.
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Figure: Spectrum of harmonic model, harmonic chirp model, and an
approximation.
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Experiments
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Figure: Histogram of differences in pitch estimates (left) and reconstruction
SNRs (right) between HM and HCM.
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Discussion and Applications
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We have seen how

» the problem of finding the parameters of the harmonic model can
be analyzed.

» the parameters of the harmonic model can be found in various
ways.

» the harmonic model and its estimators can be extended to
multiple channels under quite general conditions.

» the harmonic model can be used for designing optimal and
distortionless filters that do not require knowledge of noise
statistics.

» it is fairly straighforward to take the non-stationary nature of
speech into account.
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Some problems that can be solved with the approach are:

» Unknown model order: Can be solved with the MAP/BIC
principles and angles between subspaces.

» Model selection: Can be solved with the MAP/BIC principles.

» Colored noise: Can be handled with pre-whitening if we know or
can find the noise PSD/covariance matrix.

» Missing data: Can be solved with model-based interpolation.

» Segmentation: The MAP optimal segmentation can be found
using dynamic programming.

» Detection: Can be solved with GLRT with the harmonic model.
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These ideas are/can be used in many applications, including:

» Hearing aids

» Voice over IP

» Telecommuncation

» Reproduction systems

» Voice analysis

» Intelligence, law enforcement, defense
» Music equipment/software
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» Parametric models can be used for speech/audio compression.

» Feedback cancellation can be improved using a model of the
near-end signal.

Beamforming can be improved with the model-based approach.
Optimal filters can be designed for the chirp model too.
Model-based TDOA estimation is better than the state of the art.

It is possible to take common panning techniques in stereo into
account.

» We have recently shown that fast implementations can be found!

vV v . vvY
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» Parametric models have shown promise for several problems,
but they are not (yet) widespread.

» An argument against the usage of such models is that they do
not take various phenomena into account.

» However, we can only have this discussion because the
assumptions are explicit.

» And it is often fairly easy to improve the model and methods, if
needed.

» This is because the parametric models lead to mathematically
tractable methods.

» There are many more speech processing problems that could
probably benefit from this approach!

» These include applications with multiple channels, adverse
conditions or where the fine details matter.
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