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Introduction

What is pitch?

• that attribute of auditory sensation in terms of which sounds may be
ordered on a musical scale (ASA)

• that attribute of auditory sensation in terms of which sounds may be
ordered on a scale extending from low to high (ANSI)

Those auditory sensations are caused by signals generated by physical
processes.

Those physical processes can (most) often be characterized by a
fundamental frequency.

The properties of the observed signal determines what can and cannot be
done.
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Fourier Series

A function f (t) that repeats over T , i.e., f (t) = f (t + T ), is said to be
periodic. It has a Fourier series (under certain conditions)

f (t) =
∞∑

l=−∞
clej2πl/Tt , cl =

1
T

∫ T/2

−T/2
f (t)e−jπl/Ttdt. (1)

It has fundamental frequency ω0 = 2π/T and harmonics (overtones)
having frequencies ω0l and complex amplitudes {cl}.

Essentially states that if a signal is periodic, it has a Fourier series. If the
function f (t) is band-limited, it has a finite Fourier series.

Of limited use to us since the integration range (and thus the
fundamental frequency) must be known. Also, our signals are not
perfectly periodic and are noisy.
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An Example
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Figure: A quasi-periodic musical signal: a trumpet tone.
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Another Example
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Figure: An approximately periodic speech signal and its spectrum.
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We are here concerned with finding the fundamental frequency of
periodic signals, i.e., the physical attribute of sounds.

Why is this a difficult problem? Because it is a non-convex, nonlinear
problem. Sometimes it is not even a well-defined problem.

Pitch is not necessarily the same as the perceived pitch (but often is).

We will here use fundamental frequency and pitch synonymously and use
perceived pitch when referring to the auditory sensation phenomenon.

The study of pitch perception is an entire field of its own.

Methods for determining the physical attribute pitch can be applied to a
wide range of problems and signals.



Introduction Statistical Methods Filtering Methods Subspace Methods Amplitude Estimation Discussion

Scope
This tutorial covers:

• Methods rooted in estimation theory.
• Based on parametric models of the signal of interest.
• Analysis of pitch estimation as a mathematical problem.
• Models at signal level and on a segment-by-segment basis.

Why parametric methods?

• They lead to robust, tractable methods whose properties can be
analyzed and understood.

• A full parametrization of the signal of interest is obtained.
• Back to basics... how can we hope to solve complicated problems if
we cannot solve the simple ones?

• Basically a bunch of tools are out there. Why not use them?
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Some questions:

• Under which conditions can a method be expected to work?
• How does performance depend on various conditions, like noise color
and variance, or the number of observations?

• Is the method optimal? (and what does optimal mean?)
• Does the method work for low pitches?

Only possible to answer if assumptions are made explicit.
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Music Applications

Separation A parameterization of a signal into components allows for
a natural separation of sources if the signal components
have a close relation to the sources.

Enhancement Using parametric models, the enhancement problem is
almost trivially solved–it is a matter of finding good
estimates.

Compression Parametric models also form a natural basis for
compression (e.g., HILN, SSC).

Modification It is possible to perform many kinds of otherwise
complicated signal modification based on parametric
models (e.g., time-stretching, pitch-shifting, morphing).
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Music Applications

Transcription Automatic transcription of music is a direct application of
pitch estimators.

Tuning Very accurate real-time pitch estimators may be desirable
for tuning of musical instruments.

Classification Pitch is a commonly used feature in many music
information retrieval (MIR) tasks.

Can also be applied to other areas, like certain problems in RADAR,
SONOR, speech analysis (prosody analysis, diagnosis of illnesses) or
analysis of biological signals (e.g., ECG, bird songs).
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Signal Model
First, we introduce a source defined for n = 0, . . . ,N − 1 as

xk(n) =

Lk∑
l=1

ak,lejωk ln + ek(n) =

Lk∑
l=1

ak,lejψk,l n + ek(n) (2)

where

ωk is the fundamental frequency
ψk,l = ωk l is the frequency of the lth harmonic.
ak,l = Ak,lejφk,l is the complex amplitude.
ek(n) is the observation noise.

All the unknown real parameters are organized in a vector defined as

θk = [ ωk Ak,1 φk,1 · · ·Ak,Lk φk,Lk ]T . (3)



Introduction Statistical Methods Filtering Methods Subspace Methods Amplitude Estimation Discussion

In many cases, the observed signal consists of many such signals, i.e.,

x(n) =
K∑

k=1
xk(n) =

K∑
k=1

Lk∑
l=1

ak,lejωk ln + e(n). (4)

For this model, the full parameter vector is

θ =
[

θT
1 · · · θT

K

]T
. (5)

Estimation problems:

• Find ωk from xk(n)–a nonlinear problem.
• Find {ωk} from x(n) which is a multidimensional nonlinear problem.
• Find {ak,l} given ωk which is a linear problem.
• Find the statistics of e(n).

The noise term includes all stochastic signal components (i.e., including
stuff like bow-noise, pick noise, etc.)!
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We define vectors from M consecutive samples of the observed signal as
(with M ≤ N)

x(n) = [ x(n) · · · x(n + M − 1) ]T , (6)

and similarly for xk(n). Note that when M = N we simply write
xk(n) = xk . The signal model can be written into matrix-vector form as

x(n) =
K∑

k=1
Zk

 ejωk 1n 0
. . .

0 ejωk Lk n

 ak + e(n) (7)

=
K∑

k=1
Zkak(n) + e(n), (8)

or as x(n) =
∑K

k=1 Zk(n)ak + e(n) where

Zk = [ z(ωk) · · · z(ωkLk) ], (9)

with z(ω) = [ 1 ejω · · · ejω(M−1) ]T , and ak = [ ak,1 · · · ak,Lk ]T .
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The covariance matrix of xk(n) can be written as (assuming
independence)

R =
K∑

k=1
Rk =

K∑
k=1

E
{

xk(n)xH
k (n)

}
. (10)

The covariance matrix for a single source is then given by

Rk = ZkE
{

ak(n)aH
k (n)

}
ZH

k + E
{

ek(n)eH
k (n)

}
(11)

= ZkPkZH
k + Qk , (12)

which is called the covariance matrix model. Note that often we will
assume Q = σ2I.

The matrix Pk is the covariance matrix for the amplitudes, which can be
shown to be (under certain conditions)

Pk ≈ diag
([

A2
k,1 · · · A2

k,Lk

])
. (13)

For multiple sources, we get

R =
K∑

k=1
ZkPkZH

k + Qk . (14)
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Comments on Nonlinear Optimization

The estimators are usually stated as the solution to an optimization
problem.

Closed-form solutions to non-linear, non-convex optimization problems
rarely exist.

Hence, we must resort to numerical and often iterative optimization
methods.

In practice, this is carried out by grid-searches and subsequent
gradient-based optimization (Hessian matrices usually too complex).

Note that it is important to treat the fundamental frequency as a
continuous parameter!
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So, given a cost function J(·) first evaluate candidate fundamental
frequencies ωk on a grid Ω as

ω̂k = arg min
ωk∈Ω

J(ωk). (15)

The grid Ω must be sufficiently dense or we may miss the minumum!

Use this estimate as an initial estimate ω̂(i)
k in the following manner:

ω̂
(i+1)
k = ω̂

(i)
k − α∇J(ω

(i)
k ). (16)

Find the step size α using so-called line search:

α̂ = argmin
α

J
(
ω̂

(i)
k − α∇J(ω

(i)
k )
)
, (17)

which can be done in a number of ways. Usually, only a few iterations are
required.
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On The Complex Signal Model

There are a number of reasons we use the complex signal model:

• Simpler math
• Faster algorithms

Real signals can be mapped to (almost) equivalent complex signals:

• Using the Hilbert transform to calculate the discrete-time analytic
signal.

• Those do not hold for very low and high frequencies (relative to N).
• It is, in most cases, possible to account for real signals in estimators,
but it is often not worth the trouble.
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Issues

The following issues occur when decomposing speech and audio signals
using the signal model:

• Non-stationarity
• Noise characteristics
• Overlapping Harmonics
• Order estimation/model selection
• Inharmonicity

The one thing we want to avoid is multiple-dimensional nonlinear
optimization!
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On Modified Signal Models

A myriad of modified signal models exist, including:

• AM-FM models allowing for various kinds of modulation.
• Polynomial phase and amplitude models.
• Other parametric modulation models.
• Inharmonicity models.
• Perturbed (uncertainty) models.

Sometimes easy to incorporate in estimators, sometimes difficult,
depending on the type of estimator.

Prior knowledge (like amplitude smoothness, small perturbations, ωk
distribution) can be incorporated using priors.
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Parameter Estimation Bounds

An estimator is said to be unbiased if an estimate θ̂i of θi of the
parameter vector θ ∈ RP whose expected value is the true parameter, i.e.,

E
{
θ̂i

}
= θi ∀θi , (18)

and the difference θi − E
{
θ̂i

}
, if any, is referred to as the bias. The

Cramér-Rao lower bound (CRLB) of the parameter is given by (under
so-called regularity conditions)

var(θ̂i ) ≥ [I(θ)]−1
ii , (19)

with
[I(θ)]il = −E

{
∂2 ln p(x; θ)

∂θi∂θl

}
, (20)

where ln p(x; θ) is the log-likelihood function of the observed signal
x ∈ CN .
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The following asymptotic bounds can be established for the pitch
estimation problem for white Gaussian noise:

var(ω̂k) ≥ 6σ2

N(N2 − 1)
∑Lk

l=1 A2
k,l l2

(21)

var(Âk,l ) ≥ σ2

2N (22)

var(φ̂k,l ) ≥ σ2

2N

(
1

A2
k,l

+
3l2(N − 1)2∑Lk

m=1 Ak,mm2(N2 − 1)

)
. (23)

These depend on the following quantity:

PSNRk = 10 log10

∑L
l=1 A2

k,l l2

σ2 [dB]. (24)

For colored noise, the squared amplitudes should be weighted by the
reciprocal of the noise psd.
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Such bounds are useful for a number of reasons:

• An estimator attaining the bound is optimal.
• The bounds tell us how performance can be expected to depend on
various quantities.

• The bounds can be used as benchmarks in simulations.
• Provides us with “rules of thumb” (e.g., include as many harmonics
as possible, less noise should result in increasing performance, same
for more samples).

Caveat emptor: it does not accurately predict the performance of
non-linear estimators under adverse conditions (thresholding behavior).

It is also possible to calculate it exact CRLBs, where no asymptotic
approximations are used. These predict more complicated phenomena.

An estimator attaining the bound is said to be efficient. A more
fundamental property is consistency.
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Evaluation of Estimators
Basically two questions need to be answered: 1) how does an estimator
perform given that the model is true? 2) is the model true?

Monte Carlo Repeated experiment with parameters and/or noise being
randomized in each run.

Synthetic Signals Makes it possible to measure the performance of
estimators.

MIDI Signals Same as above, but may still ultimately be model-based.
Audio Databases Real signal allows us to answer the second question.

But how do we measure performance? Speech/audio
databases are okay, but contain subjective aspects–the
pitch may be not well-defined in a particular segment. Or
we are trying to solve an ill-posed problem.

It is of course possible to violate model assumptions (whereby robustness
is revealed) with synthetic signals.
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Basically check whether the estimator is efficient or at least consistent.

A good measure is the root mean square estimation error (RMSE):

RMSE =

√√√√ 1
SK

K∑
k=1

S∑
s=1

(
ω̂

(s)
k − ωk

)2
, (25)

where ωk and ω̂(s)
k are the true fundamental frequency and the estimate

for source k in Monte Carlo iteration s

The RMSE can be used to bound the probability of errors using the
Chebyshev inequality.

Some annotated speech and audio databases: Keele Pitch Database,
RWC Music Database, MAPS database, IOWA Musical Instrument
Samples.

Relevant MIREX tasks: Audio melody extraction, chord detection,
multi-pitch estimation & tracking, score following (training/tweaking sets
available).
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Statistical Methods

Statistical methods are based on statistical models of the observed signal
with the observation pdf being characterized by a number of parameters.

Maximum likelihood (ML) estimation is perhaps the most commonly
used of all types of estimators.

Often based on a deterministic plus stochastic signal model, where the
parameters of interest are considered deterministic but unknown and the
observation noise is the stochastic part.

ML is statistically efficient for a sufficiently high number of samples and
can be computationally demanding for nonlinear problems like ours.

Often approximate methods can be derived from explicit assumptions.
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Maximum Likelihood Method

For multi-variate Gaussian signals, the likelihood function of the observed
signal sub-vector xk(n) can be written as

p(xk(n); θk) =
1

πMdet(Qk)
e−eH

k (n)Q−1
k ek (n). (26)

Assuming that the deterministic part is stationary and the noise is i.i.d.,
the likelihood of {xk(n)}G−1

n=0 can be written as

p({xk(n)}; θk) =
G−1∏
n=0

p(xk(n); θk) =
1

πMGdet(Qk)G e−
∑G−1

n=0
eH

k (n)Q−1
k ek (n).

The log-likelihood function is L(θk) = ln p({xk(n)}; θk) and the
maximum likelihood estimator is

θ̂k = argmaxL(θk). (27)
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For white Gaussian noise, i.e., Qk = σ2I, and setting M = N the
log-likelihood function is

L(θk) = −N lnπ − N lnσ2
k −

1
σ2

k
‖ek‖2

2, (28)

with ek = xk − Zkak . Given ωk and Lk , we can substitute the amplitudes
by their LS estimates, and the ML noise variance estimate is then

σ̂2
k =

1
N ‖xk − Zk

(
ZH

k Zk
)−1 ZH

k xk‖2
2. (29)

This leads to the following estimator:

ω̂k = argmax
ωk
L(ωk) = argmax

ωk
xH

k Zk
(
ZH

k Zk
)−1 ZH

k xk . (30)

The above a nonlinear function and is termed the nonlinear least-squares
(NLS) method.
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The projection matrix ΠZk can be approximated as

lim
M→∞

MΠZk = lim
M→∞

MZk
(
ZH

k Zk
)−1 ZH

k = ZkZH
k . (31)

Using this, the noise variance estimate can be simplified, i.e.,

σ̂2
k ≈

1
N ‖xk −

1
N ZkZH

k xk‖2
2. (32)

Writing out the log-likelihood function, we get

ω̂k = argmax
ωk
L(ωk) = argmax

ωk
−N lnπ − N ln σ̂2

k − N (33)

= argmax
ωk

xH
k ZkZH

k xk = argmax
ωk
‖ZH

k xk‖2
2 (34)

where ‖ZH
k xk‖2

2 =
∑Lk

l=1 |
∑N−1

n=0 xk(n)e−jωk ln|2 ,
∑Lk

l=1 |Xk(ωk l)|2, i.e.,
this can be computed using an FFT (i.e., harmonic summation)!

This is known as the approximate NLS method (ANLS). Note that these
estimators are known to be robust to colored noise.
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Figure: Log-likelihood function for a synthetic periodic signal (with Lk = 5).
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Figure: Cost function for a synthetic signal ωk = 0.3142.
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Figure: Speech signals with pitches 165 and 205 Hz.
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Figure: Approximate maximum likelihood cost function for the two speech
signals (left) and their mixture (right).
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Inharmonicity

To incorporate the inharmonicity model, we only have to replace the
frequencies ωk l by ψk,l = ωk l

√
1 + Bk l2, i.e., the estimator becomes

(ω̂k , B̂k) = arg max
ωk ,Bk

Lk∑
l=1
|Xk(ψk,l )|2 (35)

= arg max
ωk ,Bk

Lk∑
l=1
|Xk(ωk l

√
1 + Bk l2)|2, (36)

which means that we, in principle, have to sweep over combinations of
the two nonlinear parameters to obtain the estimates.

Similarly, in the exact method, Zk would then be a function of both ωk
and Bk .
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Model and Order Selection

For the parametric methods to work, the model order L must be known!

To determine the model order (or choose between different models), one
can use a number of different methods.

The MAP method penalizes nonlinear and linear parameters differently
and is well-suited for our purposes.

First, we introduce Zq = {0, 1, . . . , q − 1} which is the candidate model
index set withMm,m ∈ Zq being the candidate models.

The principle of MAP-based model selection is to choose the model that
maximizes the a posteriori probability, i.e.,

M̂k = arg max
Mm,m∈Zq

p(Mm|xk) = arg max
Mm,m∈Zq

p(xk |Mm)p(Mm)

p(xk)
. (37)
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Assuming that all the models are equally probable, i.e.,

p(Mm) =
1
q (38)

and noting that p(xk) is constant once xk has been observed, the MAP
model selection criterion reduces to

M̂k = arg max
Mm,m∈Zq

p(xk |Mm), (39)

which is the likelihood function when seen as a function ofMm.

Since the various models also depend on a number of unknown
parameters, we will integrate those out as

p(x|Mm) =

∫
Θk

p(xk |θk ,Mm)p(θk |Mm)dθk . (40)
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We will use the method of Laplace integration. Assuming that the
likelihood function is highly peaked, we can write∫

Θk

p(xk |θk ,Mm)p(θk |Mm)dθk

= πDk/2 det
(

Ĥk

)−1/2
p(xk |θ̂k ,Mm)p(θ̂k |Mm), (41)

where Dk is the number of parameters and

Ĥk = − ∂2 ln p(xk |θk ,Mm)

∂θk∂θT
k

∣∣∣∣
θk =θ̂k

(42)

is the Hessian of the log-likelihood function evaluated at θ̂k (also known
as the observed information matrix).
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Taking the logarithm and ignoring constant terms (and Dk
2 lnπ), we get

M̂k = arg min
Mm,m∈Zq

− ln p(xk |θ̂k ,Mm)︸ ︷︷ ︸
log-likelihood

+
1
2 ln det

(
Ĥk

)
︸ ︷︷ ︸

penalty

, (43)

which can be used directly for selecting between various models and
orders.

The Hessian matrix is related to the Fischer information matrix, only it is
evaluated in θ̂k . We introduce the normalization matrix

KN =

[
N−3/2 0

O N−1/2I

]
(44)

where I is an 2Lk × 2Lk identity matrix.
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Using this normalization matrix, we can write the determinant of the
Hessian in as

det
(

Ĥk

)
= det

(
K−2

N
)
det
(

KNĤkKN

)
. (45)

And, finally, by observing that KNĤkKN = O(1) and taking the
logarithm, we obtain

ln det
(

Ĥk

)
= ln det

(
K−2

N
)

+ ln det
(

KNĤkKN

)
(46)

= ln det
(
K−2

N
)

+O(1) (47)
= 3 lnN + 2Lk lnN +O(1). (48)

When the additive noise is a white complex Gaussian process, the
log-likelihood function is N lnσ2

k , where σ2
k then is replaced by an

estimate σ̂2
k(Lk).
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Model Selection Rules
This all leads to the following rule (for Lk ≥ 1):

L̂k = argmin
Lk

N log σ̂2
k(Lk) + Lk logN +

3
2 logN. (49)

No harmonics are present if

N log σ̂k(0)2 < N log σ̂2
k(L̂k) + L̂k logN +

3
2 logN. (50)

Comments:

• Accurate order estimation is critical to the pitch estimation problem
but also a very difficult problem.

• Statistical order estimation methods (MDL, MAP, AIC) are based on
asymptotic approximations and are often arbitrary and suboptimal.

• Colored noise may cause problems for order estimation, more so than
for fundamental frequency estimation!
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Figure: MAP model selection criterion and log-likelihood term for a synthetic
signal with Lk = 5.
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Figure: Voiced speech signal spectrogram (top) and pitch estimates (bottom).
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Expectation Maximization Algorithm

We write the signal model as a sum of K sources in white additive
Gaussian noise, i.e.,

x =
K∑

k=1
xk (51)

where the individual sources are given by xk = Zkak + βke, and

• the noise source is decomposed into ek = βke where βk ≥ 0 is
chosen so that

∑K
k=1 βk = 1.

• the set {xk} is referred to as the complete data which is
unobservable and the observed data is x.

• x and {xk} are assumed to be jointly Gaussian.
• the observations are assumed to be white Gaussian.
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The problem is then to estimate the complete data set or its parameters.
By stacking the complete data in a vector y as

y =
[

xT
1 xT

2 . . . xT
K
]T
, (52)

we can now write the incomplete data as

x = Hy, (53)

where H = [ I · · · I ]. In each iteration, where (i) denotes the iteration
number, the EM algorithm consists of two steps, the E-step, i.e.,

U(θ,θ(i)) =

∫
ln p(y, x; θ)p(y|x; θ(i))dy, (54)

and the M-step, i.e.,

θ(i+1) = argmax
θ

U(θ,θ(i)). (55)
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Define an estimate of the kth source at iteration (i) as

x̂(i)
k = Z(i)

k â(i)
k + βk

(
x−

K∑
k=1

Z(i)
k â(i)

k

)
, (56)

where Z(i)
k is constructed from ω̂

(i)
k . The problem of estimating the

fundamental frequencies then becomes

ω̂
(i+1)
k = arg max

ω
(i+1)

k

x̂(i)H
k Zk

(
ZH

k Zk
)−1 ZH

k x̂(i)
k (57)

and the amplitudes can be found given ω̂(i+1)
k as

â(i+1)
k =

(
Z(i+1)H

k Z(i+1)
k

)−1
Z(i+1)H

k x̂(i)
k . (58)

This process is then repeated until convergence for i = 0, . . . , I − 1.

This is the same as the single-pitch ML method, but applied to the
source estimates.
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Comments:

• The EM algorithm leads to an implicit source separation.
• It is quite complicated to use and, especially, to initialize.
• Many different variations of these ideas can be (and have been)
devised. For example, the harmonic matching pursuit.

• The model order estimation problem can cause difficulties.
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Harmonic Fitting
Idea: Estimate the unconstrained frequencies {ψk,l} and fit the
fundamental frequency to those (aka EXIP). Define

θ′k = [ Ak,1 φk,1 ψk,1 · · ·Ak,Lk φk,Lk ψk,Lk ]T (59)

and
η′k = [ ωk Ak,1 φk,1 · · ·Ak,Lk φk,Lk ]T . (60)

The basic idea of the method is that there exists a so-called selection
matrix S′ ∈ Z3Lk×(2Lk +1) that relates the vectors as

θ′k = S′η′k . (61)

We can now find an estimate of η′k from estimates θ̂
′
k as

η̂′k = argmin
η′k

∥∥∥W′ 12
(

θ̂
′
k − S′η′k

)∥∥∥2

2
. (62)

How to choose W′?
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If a maximum likelihood estimator is used for θ′k then the estimates will
asymptotically be distributed according the CRLB!

Hence, we may choose W′ = I(θ̂
′
k), which is the FIM matrix. Therefore,

W′ becomes block diagonal for large N, i.e.,

W′ =

 W′1 0
. . .

0 W′Lk

 , (63)

where the individual sub-matrices contain the inverse of the CRLB matrix
for the individual sinusoids of the unconstrained model, i.e.,

W′l =
1
σ2

k

 2N 0 0
0 2NÂ2

k,l N2Â2
k,l

0 N2Â2
k,l

2
3N

3Â2
k,l

 . (64)



Introduction Statistical Methods Filtering Methods Subspace Methods Amplitude Estimation Discussion

The weighting does not lead to refined estimates of the amplitudes.
Consequently, we define θk ∈ R2Lk×1 and ηk ∈ RLk +1×1 like θ′k and η′k
but without the amplitudes. Now we may rewrite (61) as

θk =



0 1 0 · · · 0
1 0 0 · · · 0
0 0 1 · · · 0
2 0 0 · · · 0

...
...

0 0 0 · · · 1
Lk 0 0 · · · 0


ηk , Sηk . (65)

As before, we can state our estimator as the minimizer of the norm of the
error between the left and the right side of this expression, i.e.,

η̂k = argmin
ηk

∥∥∥W 1
2

(
θ̂k − Sηk

)∥∥∥2

2
. (66)
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W is a now block diagonal with sub-matrices Wl defined as

Wl =
1
σ2

k

[
2NÂ2

k,l N2Â2
k,l

N2Â2
k,l

2
3N

3Â2
k,l

]
, (67)

and the cost function is

J =
∥∥∥W 1

2

(
θ̂k − Sηk

)∥∥∥2

2
=

1
σ2

k

Lk∑
l=1

Â2
k,l ([2N(φ̂k,l − φk,l ) + N2(ψ̂k,l − lωk)]

× (φ̂k,l − φk,l ) +

[
N2(φ̂k,l − φk,l ) +

2
3N

3(ψ̂k,l − lωk)

]
(ψ̂k,l − lωk)).

Substituting the phases {φk,l} by estimates and solving for ωk , we get

ω̂k =

∑Lk
l=1 l Â2

k,l ψ̂k,l∑Lk
l=1 l2Â2

k,l
. (68)

Which is essentially a closed-form fundamental frequency estimator!
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Experimental Details

• RMSE as a function of various conditions.
• Percentage of correctly estimated model orders.
• ω1 = 0.6364 and ω2 = 0.1580, three harmonics, unit amplitudes.
• 100 Monte Carlo iterations for each point when RMSE, 1000 for
orders.

• When estimating ωk , the model order is assumed known (and vice
versa).

• White Gaussian noise.
• First a coarse estimate is found using grid search, then
Gradient/Newton methods are used for refinement.
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Experimental Results
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Figure: RMSE as a function of N (with PSNR = 40 dB) and PSNR (with
N = 400).
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(with PSNR = 40 dB) and PSNR (with N = 500).
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Discussion

• For the single-pitch case, the NLS methods performs extremely well,
being statistically efficient, even asymptotically for colored noise.

• Associated problems of model and order selection can be solved
consistently within the framework.

• Somewhat problematic for the multi-pitch case, requiring
multidimensional nonlinear optimization.

• The EM algorithm and similar methodologies provide only a partial
solution.

• The harmonic fitting approach is very sensitive to spurious estimates
and its generalization to multiple pitches is not straightforward.
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Filtering Methods

Intuitive idea: filter the observed signal with filters having unit gain for
the candidate harmonics while suppressing everything else.

Can be used for estimating parameters, extracting periodic signals, and
separation of periodic signals.

One can use classical IIR/FIR filters or adaptive optimal filters.

The history of comb filters goes far back.

As we shall seen, there also exists some connections between statistical
methods and filtering methods.
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Comb Filtering

Mathematically, we may express periodicity as x(n) ≈ x(n − D) where D
is the pitch period. It follows that a measure of the periodicity can be
obtained using a metric on e(n) defined as

e(n) = x(n)− αx(n − D). (69)

Taking the z-transform of this expression we get

E (z) = X (z)− αX (z)z−D (70)
= X (z)(1− αz−D). (71)

The transfer function H(z) of the filter that operates on x(n) can be
seen to be

H(z) =
E (z)

X (z)
= (1− αz−D). (72)

This mathematical structure is known as a comb filter.
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A more efficient alternative is notch filters which are filters that cancel
out signal components at certain frequencies. These have the following
form:

H(z) =
1 + β1z−1

1 + ρβ1z−1 =
P(z)

P(ρ−1z)
. (73)

Using Lk such notch filters having notches at frequencies {ψi}, we obtain

P(z) =

Lk∏
i=1

(1− ejψi z−1) = 1 + β1z−1 + . . .+ βLk z−Lk , (74)

which has zeros on the unit circle at the desired frequencies. This
polynomial defines the numerator, while the denominator is

P(ρ−1z) =

Lk∏
i=1

(1− ρejψi z−1) = 1 + ρβ1z−1 + . . .+ ρLkβMz−Lk . (75)
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Combining these, one obtains the following comb filter:

H(z) =
P(z)

P(ρ−1z)
=

1 + β1z−1 + β2z−2 + . . .+ βLk z−Lk

1 + ρβ1z−1 + ρ2β2z−2 + . . .+ ρLkβLk z−Lk
. (76)

By applying this filter for various candidate fundamental frequencies to
our observed signal x(n), we can obtain the filtered signal e(n) where the
harmonics have been suppressed:

e(n) = x(n) + β1x(n − 1) + β2x(n − 2) + . . .+ βLk x(n − Lk) (77)
− ρβ1e(n − 1)− ρ2β2e(n − 2)− . . .− ρLkβLk e(n − Lk). (78)

Finally, we can use this signal for finding the fundamental frequency:

ω̂k = argmin
ω

J with J =
N∑

n=1
|e(n)|2. (79)
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Classical Methods
Returning to the original comb filter

e(n) = x(n)− αx(n − D), (80)

we see that it can be thought of as a prediction problem with unknowns
α and D. We could determine these as

{α̂, D̂} = argmin
α,D

E
{
|e(n)|2

}
, (81)

which is also what long-term predictors in speech coders do. Assuming
α = 1, we obtain

E
{
|e(n)|2

}
= E {(x∗(n)− x∗(n − D)) ((x(n)− x(n − D))} (82)
= E

{
|x(n)|2

}
+ E

{
|x(n − D)|2

}
− E {x∗(n)x(n − D)} − E {x∗(n − D)x(n)} . (83)

Assuming that the signal is stationary, we have that
E
{
|x(n)|2

}
= E

{
|x(n − D)|2

}
= σ2.
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Furtermore, we have that r(D) = E {x∗(n)x(n − D)}. This leads to the
following estimator:

D̂ = argmax
D

2Re(r(D)), (84)

which is the well-known auto-correlation method (complex version). One
can generalize this principle as follows (with p ≥ 1):

D̂ = argmin
α,D

E {|x(n)− x(n − D)|p} . (85)

Comments:

(i) For p = 2, we obtain the autocorrelation method (corresponding to
e(n) being Gaussian).

(ii) For p = 1, we obtain the average magnitude difference function
(AMDF) method (corresponding to e(n) being Laplacian).

(iii) Restricted to integer samples (fractional delays require more work).
(iv) Non-unique estimates (and summation limits considerations).
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FIR Methods

We construct a vector from M time-reversed samples of the observed
signal, i.e.,

x(n) = [ x(n) x(n − 1) · · · x(n −M + 1) ]T , (86)

with M ≤ N and with (·)T denoting the transpose. Next, introducing the
output signal yk,l (n) of the lth filter for the kth source having
coefficients hk,l (n) as

yk,l (n) =
M−1∑
m=0

hk,l (m)x(n −m) = hH
k,lx(n), (87)

hk,l being a vector containing the impulse response of the lth filter, i.e.,

hk,l =
[
h∗k,l (0) · · · h∗k,l (M − 1)

]H
. (88)



Introduction Statistical Methods Filtering Methods Subspace Methods Amplitude Estimation Discussion

The output power of the lth filter can be written as

E
{
|yk,l (n)|2

}
= E

{
hH

k,lx(n)xH(n)hk,l
}

= hH
k,lRhk,l . (89)

The total output power of all the filters is

Lk∑
l=1

E
{
|yk,l (n)|2

}
=

Lk∑
l=1

hH
k,lRhk,l . (90)

Defining a matrix Hk consisting of the filters {hk,l} as

Hk = [ hk,1 · · · hk,Lk ] , (91)

we can write the total output power as a sum of the power of the
subband signals, i.e.,

Lk∑
l=1

E
{
|yk,l (n)|2

}
= Tr

[
HH

k RHk
]
. (92)
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Interpretation of the NLS Method

Suppose we construct the filters from complex sinusoids as

hk,l =
[
e−jωk l0 · · · e−jωk l(M−1)

]T
, (93)

The matrix Hk is identical to the Vandermonde matrix Zk except that it
is time-reversed, i.e.,

Zk = [ z(ωk) · · · z(ωkLk) ], (94)

with z(ω) = [ 1 e−jω · · · e−jω(M−1) ]T . Then, we may write the total
output power of the filterbank as

Tr
[
HH

k RHk
]

= Tr
[
ZH

k RZk
]

(95)
= E

{
‖ZH

k x(n)‖2
2
}
. (96)

Except for the expectation, this is the FFT method introduced earlier.



Introduction Statistical Methods Filtering Methods Subspace Methods Amplitude Estimation Discussion

Optimal filterbank

Idea: find a set of filters that pass power undistorted at specific
frequencies while minimizing the output power:

min
Hk

Tr
[
HH

k RHk
]

s.t. HH
k Zk = I, (97)

where I is the Lk × Lk identity matrix. As before, the matrix Zk ∈ CM×Lk

is constructed from Lk complex sinusoidal vectors.

Using the method of Lagrange multipliers, the filterbank matrix Hk can
be shown to be

Hk = R−1Zk
(
ZH

k R−1Zk
)−1

. (98)

This data and frequency dependent filter bank can then be used to
estimate the fundamental frequencies as

ω̂k = argmax
ωk

Tr
[(

ZH
k R−1Zk

)−1]
. (99)
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Optimal Filter

Suppose that we instead design a single filter for the kth source, hk . This
filter design problem can be stated as

min
hk

hH
k Rhk s.t. hH

k z(ωk l) = 1, (100)

for l = 1, . . . , Lk .

This has the solution

hk = R−1Zk
(
ZH

k R−1Zk
)−1 1 and hH

k Rhk = 1H (ZH
k R−1Zk

)−1 1.

As before, we readily obtain an estimate of the fundamental frequency as

ω̂k = argmax
ωk

1H (ZH
k R−1Zk

)−1 1. (101)

It is perhaps not clear how these two estimators are related.
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white noise.
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Asymptotic Analysis
Comparing the optimal filters, we observe that they can be related as

hk = R−1Zk
(
ZH

k R−1Zk
)−1 1 = Hk1 =

L∑
l=1

hk,l , (102)

but generally 1H (ZH
k R−1Zk

)−1 1 6= Tr
[(

ZHR−1Zk
)−1
]
.

Analyzing the asymptotic properties of the cost function, we see that

lim
M→∞

1
M
(
ZH

k RZk
)

= diag
([

Φ(ωk) · · · Φ(ωkLk)
])
, (103)

with Φ(ω) being the psd of x(n). It can therefore be seen that

lim
M→∞

M1H (ZH
k R−1Zk

)−1 1 =

Lk∑
l=1

Φ(ωk l). (104)

Conclusion: The methods are asymptotically equivalent and are
equivalent to the NLS method too!
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Order Estimation
As stated earlier, the MAP criterion is defined for Lk ≥ 1 as

L̂k = argmin
L

N log σ̂2(Lk) + Lk logN +
3
2 logN. (105)

We now need to find the estimate σ̂2(Lk) from the residual
ê(n) = x(n)− yk(n). Additionally, yk(n) is

yk(n) =
M−1∑
m=0

Lk∑
l=1

hk,l (m)x(n −m) =
M−1∑
m=0

hk(m)x(n −m), (106)

where hk(m) is the sum over the filters of the filterbank. We can now
write (with gk = [ (1− hk(0)) − hk(1) · · · − hk(M − 1) ]H)

ê(n) = x(n)−
M−1∑
m=0

hk(m)x(n −m) , gH
k x(n). (107)
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We can then estimate the noise variance as

σ̂2(Lk) = E
{
|ê(n)|2

}
= E

{
gH

k x(n)xH(n)gk
}

= gH
k Rgk . (108)

Defining gk = b1 − hk , with b1 = [ 1 0 · · · 0 ] the variance estimate is
rewritten as

σ̂2(Lk) = bH
1 Rb1 − bH

1 Rhk − hH
k Rb1 + hH

k Rhk . (109)

The first term can be identified as bH
1 Rb1 = E

{
|x(n)|2

}
and hH

k Rhk we
know. Writing out the cross-terms yields

bH
1 Rhk = bH

1 RR−1Zk
(
ZH

k R−1Zk
)−1 1 = hH

k Rhk . (110)

Therefore, the variance estimate can be expressed as

σ̂2(Lk) = E
{
|x(n)|2

}
− 1H (ZH

k R−1Zk
)−1 1. (111)
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Efficient Implementation

Both the filterbank method and the single filter method require the
calculation of (

ZH
k R−1Zk

)−1
. (112)

To apply the MIL to the calculation of the cost function, we first define a
matrix

Z(Lk−1)
k = [ z(ωk) · · · z(ωk(Lk − 1)) ] , (113)

and a vector z(Lk )
k =

[
e−jωk Lk 0 · · · e−jωk Lk (M−1)

]T . We can now write

(
ZH

k R−1Zk
)−1

=

[
Z(Lk−1)H

k R−1Z(Lk−1)
k Z(Lk−1)H

k R−1z(Lk )
k

z(Lk )H
k R−1Z(Lk−1)

k z(Lk )H
k R−1z(Lk )

k

]−1

, ΞLk , (114)

where ΞLk is the matrix calculated for an order Lk model.
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Next, define the quantities

ξLk = z(Lk )H
k R−1z(Lk )

k and ηLk
= Z(Lk−1)H

k R−1z(Lk )
k . (115)

We can now express the matrix inverse using the MIL in terms of these as

ΞLk =

[
ΞLk−1 0

O 0

]
+

[
−ΞLk−1ηLk

1

]
× 1
ξH

Lk
− ηH

Lk
ΞLk−1ηLk

[
−ηH

Lk
ΞLk−1 1

]
(116)

,

[
ΞLk−1 0

O 0

]
+

1
βLk

[
ζLk

ζH
Lk
−ζLk

−ζH
Lk

1

]
. (117)

This shows that once ΞLk−1 is known, ΞLk can be obtained in a simple
way.
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For a given ωk , we calculate the order 1 inverse matrix as

Ξ1 =
1
ξ1
, (118)

and then, for l = 2, . . . , Lk , calculate

κl = R−1z(l)
k (119)

ξl = z(l)H
k κl (120)

ηl = Z(l−1)H
k κl (121)

ζ l = Ξl−1ηl (122)
βl = ξH

l − ηH
l Ξl−1ηl (123)

Ξl =

[
Ξl−1 0

O 0

]
+

1
βl

[
ζ lζ

H
l −ζ l

−ζH
l 1

]
, (124)

from which the fundamental frequency and the model order can be found.
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Experimental Results
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Figure: RMSE as a function of N (with PSNR = 40 dB) and PSNR (with
N = 400).
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Figure: Percentage of correctly estimated model orders as a function of N
(with PSNR = 40 dB) and PSNR (with N = 500).
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Discussion

• The methods based on optimal filtering form an intriguing
alternative for pitch estimation.

• Especially so as they lead to a natural decoupling of the multi-pitch
estimation problem.

• They can also be used directly for enhancement and separation.
• They have excellent performance under adverse conditions, like
closely spaced multiple pitches.

• Robust to colored noise.
• Complexity may be prohibitive for some applications.
• Order and model selection can be performed consistently within the
framework.
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Subspace Methods

In subspace methods, the full observation space is divided into signal
(plus noise) and noise subspaces.

The properties of these can then be used for various estimation and
identification tasks.

Some of the most elegant unconstrained frequency estimators are
subspace methods, with ESPRIT, MODE, and root-MUSIC essentially
being the only closed-form frequency estimators.

There has been some interesting in subspace methods in the connection
with sinusoidal speech and audio modeling (unconstrained model).



Introduction Statistical Methods Filtering Methods Subspace Methods Amplitude Estimation Discussion

Covariance Matrix Model

Define Z =
[

Z1 · · · ZK
]
and a(n) =

[
aT

1 (n) · · · aT
K (n)

]T .
We write the model as

x(n) =
K∑

k=1
Zkak(n) + e(n), = Za(n) + e(n). (125)

As shown earlier, the covariance matrix is then (
∑K

k=1 ZkPkZH
k has rank

V =
∑K

k=1 Lk)

R =E
{

x(n)xH(n)
}

=
K∑

k=1
ZkPkZH

k + σ2I = ZPZH + σ2I (126)

with Pk = diag
(
[ |Ak,1|2 · · · |Ak,Lk |2 ]

)
and P = diag ([ P1 · · · PK ]).
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Let
R = UΛUH (127)

be the eigenvalue decomposition (EVD) of the covariance matrix. U
contains the M orthonormal eigenvectors of R, i.e.,

U =
[

u1 · · · uM
]
, (128)

and Λ is a diagonal matrix containing the corresponding (sorted) positive
eigenvalues, λk . Let S be formed as

S =
[

u1 · · · uV
]
. (129)

The subspace that is spanned by the columns of S we denote R (S),
which is the same space as R (Z).
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Similarly, let G be formed as

G =
[

uV +1 · · · uM
]
, (130)

where R (G) is the so-called noise subspace. Using the EVD, the
covariance matrix model can now be written as

U
(
Λ− σ2I

)
UH =

K∑
k=1

ZkPkZH
k . (131)

Some useful properties that can be exploited for estimation purposes can
now be established. It can be seen that (MUSIC)

ZHG = 0 and ZH
k G = 0 ∀k. (132)

When only one source is present we have that Z = Zk and V = Lk .
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Furthermore, we have that S = ZB. Defining

S = [ I 0 ] S and S = [ 0 I ] S. (133)

and
Z = [ I 0 ] Z and Z = [ 0 I ] Z, (134)

we see that
Z = ZD and S = SΞ, (135)

with D = diag
(
[ ejψ1 · · · ejψL ]

)
. This leads us to (ESPRIT)

Ξ = B−1DB, (136)

from which the frequencies {ψl} can be found.
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Pre-whitening

The question is how to deal with colored noise. The classical approach is
to either do a) sub-band processing or b) pre-whitening. When the noise
is not white, the covariance matrix model is

R =E
{

x(n)xH(n)
}

= ZPZH + Q, (137)

where Q = E{e(n)eH(n)}. Since covariance matrices are symmetric and
positive definite, so are their inverses and the Cholesky factorization of
Q−1 is

Q−1 = LLH , (138)

where L is an M ×M lower triangular matrix. By multiplying the
observed signal vectors by this matrix, we get

E
{

LHx(n)xH(n)L
}

=LHZPZHL + I. (139)

A simple implementation of this is via a pre-whitening filter.
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Rank Estimation

As we have seen, the likelihood function of the observed signal can for
the Gaussian case be expressed as:

p({x(n)}; ζ) =
G−1∏
n=0

p(x(n); ζ) (140)

=
1

πGM det(R)G e−
∑G

n=0
xH (n)R−1x(n). (141)

By taking the logarithm, we obtain the log-likelihood function

L(ζ) = ln p({x(n)}; ζ) (142)

= −GM lnπ − G ln det(R)−
G−1∑
n=0

xH(n)R−1x(n). (143)
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As it turns out, this can be expressed as

L(ζ) = −GM lnπ − G ln
M∏

v=1
λ̂v − G(M − L′) ln

1
M−L′

∑M
v=L′+1 λ̂v∏M

v=L′+1 λ̂
1/(M−L′)
v

− GM.

Using the AIC (ν = 2) or MDL (ν = 1
2 lnN), we obtain the following cost

function to be minimized for determining the rank of the signal subspace:

J(L′) = −L(ζ) + (L′(2M − L′) + 1)ν. (144)

The signal subspace dimension is identical to the number of harmonics
for the single-pitch case and the total number of harmonics for
multi-pitch signals.

Unfortunately, the criterion performs poorly in practice, especially when
the noise is colored.
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Angles Between Subspaces

The principal angles {θk} between the two subspaces Z = R(Z) and
G = R(G) are defined recursively for k = 1, . . . ,K as

cos (θk) = max
u∈Z

max
v∈G

uHv
‖u‖2‖v‖2

= uH
k vk , (145)

where K is the minimal dimension of the two subspaces, i.e.,
K = min{V ,M − V } and uHui = 0 and vHvi = 0 for i = 1, . . . , k − 1.

For subspace G, the projection matrix is

ΠG = G
(
GHG

)−1 GH = GGH , (146)

while for subspace Z, the projection matrix is

ΠZ = Z
(
ZHZ

)−1 ZH . (147)
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Using the two projection matrices, we can now write

cos (θk) = max
y

max
z

yHΠZΠGz
‖y‖2‖z‖2

= yH
k ΠZΠGzk = σk . (148)

for k = 1, . . . ,K . Furthermore, we require that yHyi = 0 and zHzi = 0
for i = 1, . . . , k − 1. It follows that {σk} are the singular values of ΠZΠG
which are related to the Frobenius norm as

‖ΠZΠG‖2
F = Tr

{
ΠZΠGΠ

H
GΠ

H
Z

}
= Tr {ΠZΠG} =

K∑
k=1

σ2
k . (149)

Interestingly, this can be related to the Frobenius norm of the difference
between the two projection matrices, i.e.,

‖ΠZ −ΠG‖2
F = Tr{ΠZ + ΠG − 2ΠZΠG} = M − 2‖ΠZΠG‖2

F . (150)
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The Frobenius norm of the product ΠZΠG can be rewritten as

‖ΠZΠG‖2
F = Tr

{
Z
(
ZHZ

)−1 ZHGGH
}
. (151)

This can be simplified because limM→∞MΠZ = ZZH :

‖ΠZΠG‖2
F =

K∑
k=1

σ2
k ≈

1
M Tr

{
ZHGGHZ

}
=

1
M ‖Z

HG‖2
F . (152)

By averaging over all the nontrivial angles, we now arrive at (with
K = min{V ,M − V }.)

1
K

K∑
k=1

cos2(θk) =
1
K

K∑
k=1

σ2
k ≈

1
MK ‖Z

HG‖2
F (153)

which can be used to measure the level of orthogonality to obtain a)
parameter estimates and b) order estimates.
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Estimation using the Orthogonality Property

For the single-pitch case, the covariance matrix model is

Rk =E
{

xk(n)xH
k (n)

}
= ZkPkZH

k + σ2I (154)

By forming a matrix Zk for different candidate frequencies and then
measure the angles between the subspaces we can obtain an estimate as

ω̂k = argmin
ωk
‖ZH

k G‖2
F = argmin

ωk

Lk∑
l=1
‖zH(ωk l)G‖2

2, (155)

i.e., we find estimates by maximizing the angles between the subspaces
R(Zk) and R(G). For an unknown model order we arrive at

ω̂k = argmin
ωk

min
Lk

1
MK ‖Z

H
k G‖2

F with K = min{Lk ,M − Lk}. (156)
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To recapitulate, the covariance matrix model for the multi-pitch case is

R =
K∑

k=1
ZkPkZH

k + σ2I = ZPZH + σ2I. (157)

The subspace orthogonality property states that the matrix Z and all its
sub-matrices are orthogonal to G, i.e.,

ZHG = 0 and ZH
k G = 0 ∀k. (158)

First, assume that the model orders are known and note that
‖ZHG‖2

F =
∑K

k=1 ‖ZH
k G‖2

F . The set of fundamental frequencies
estimates are then

{ω̂k} = arg min
{ωk}
‖ZHG‖2

F = arg
K∑

k=1
min
ωk
‖ZH

k G‖2
F , (159)

which allows for independent optimization over the sources.
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For the case where the model orders {Lk} (and thus the rank of G) are
unknown, the estimator becomes

{ω̂k} = arg min
{ωk}

min
{Lk}

1
MK ‖Z

HG‖2
F , (160)

where K = min{
∑K

k=1 Lk ,M −
∑K

k=1 Lk} since the rank of the signal and
noise subspaces depend on the total number of harmonics. Fortunately,
the estimator can be simplified somewhat as

min
{ωk}

min
{Lk}

1
MK ‖Z

HG‖2
F = min

{Lk}

K∑
k=1

min
ωk

1
MK ‖Z

H
k G‖2

F . (161)

Simplification: Find G first using another method.
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Figure: Subspace-based cost function for the two speech signals (left) and their
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model order Lk for a signal where the true order is five.
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Inharmonicity
Consider the unconstrained signal model and various models for {ψk,l}

xk(n) =

Lk∑
l=1

Ak,lej(ψk,l n+φk,l ) + ek(n). (162)

• ψk,l l = ωk l .
• ψk,l = ωk l

√
1 + Bk l2 with Bk � 1 (pinned ends).

• ψk,l = ωk l
√
1 + Bk l2

(
1 + 2

π

√
Bk + 4

π2 Bk
)
(clamped ends).

Comments:

• We refer to the last two models as parametric inharmonicity models.
• Deviations from the harmonic model is sometimes referred to as
inharmonicity (a very pronounced effect for some instruments).
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It is trivial to incorporate these models in MUSIC. The Zk matrix is
constructed from the two nonlinear parameters as

Zk =
[

z(ωk
√
1 + Bk) · · · z(ωkLk

√
1 + BkL2

k)
]
. (163)

Thus, estimates can be obtained as

(ω̂k , B̂k) = arg min
ωk ,Bk

∥∥ZH
k G
∥∥2

F , (164)

which has to be evaluated for a large range of combinations of the two
parameters.
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We will now introduce an alternative model of the inharmonicity as

xk(n) =

Lk∑
l=1

ak,lej(ωk l+∆k,l )n + ek(n), (165)

where {∆k,l} is a set of small perturbations.

(i) This model is more general than the parametric inharmonicity
models (a model mismatch often leads to biased estimates).

(ii) The perturbations have to be small, otherwise the associated
fundamental frequency estimate will be meaningless.

The Vandermonde matrix is now characterized by ωk and {∆k,l} as

Zk =
[

z(ωk + ∆k,1) · · · z(ωkLk + ∆k,Lk )
]
. (166)

But direct minimization of the cost function will be very computationally
demanding and will not lead to any meaningful estimates.
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Instead, one can use a cost function like

J(ωk , {∆k,l}) =
∥∥ZH

k G
∥∥2

F + P({∆k,l}), (167)

where

• P({∆k,l}) is the penalty function which is a non-decreasing function
of a metric with P({0}) = 0.

• It is desirable that the penalty function is additive over the
harmonics.

Therefore, a natural choice is P({∆k,l}) =
∑Lk

l=1 νl |∆k,l |p with p ≥ 1
({νl} is a set of positive constants).

We note that the Frobenius norm is additive over the columns of Zk , i.e.,

J(ωk , {∆k,l}) =
L∑

l=1
zH(ωk l + ∆k,l )GGHz(ωk l + ∆k,l ) +

Lk∑
l=1

νl |∆k,l |p.



Introduction Statistical Methods Filtering Methods Subspace Methods Amplitude Estimation Discussion

Substituting ψk,l by ωk l + ∆k,l and ∆k,l by ψk,l − ωk l , and due to
additive and independence, we get

ω̂k = argmin
ωk

min
{ψk,l}

{ Lk∑
l=1

zH(ψk,l )GGHz(ψk,l ) + νl |ψk,l − ωk l |p
}

= argmin
ωk

Lk∑
l=1

min
ψk,l

{
zH(ψk,l )GGHz(ψk,l ) + νl |ψk,l − ωk l |p

}
,

where the first term depends only on ψk,l and is the reciprocal of the
MUSIC pseudo-spectrum. For a given ω̂k , the frequencies are simply

ψ̂k,l = argmin
ψk,l

{
zH(ψk,l )GGHz(ψk,l ) + νl |ψk,l − ω̂k l |p

}
. (168)



Introduction Statistical Methods Filtering Methods Subspace Methods Amplitude Estimation Discussion

About the penalty term:

• Log-prior on perturbations in the context of MAP estimation.
• For large νl , the perturbation will be small, whereas for νl close to
zero, the estimator will reduce to finding unconstrained frequencies.

• {νl} can be seen as Lagrange multipliers, i.e., we have a set of
implicit constraints. The robust Capon beamformer is based on
explicit constraints.

• p = 1 will result in small perturbations while allowing for a few large
ones and νl ∝ 1/l allows for large deviations for higher harmonics.

• May be worth considering an asymmetrical penalty function.
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Estimation using Shift-Invariance

Sinusoidal parameters can be found by constructing the matrices S and S
and then solving for Ξ in

S ≈ SΞ, (169)

in some sense, like

Ξ̂ = argmin
Ξ
‖S− SΞ‖2

F =
(

SHS
)−1

SHS, (170)

where the sinusoidal frequencies are found as the eigenvalues of Ξ̂.
Similarly, an order estimate can be obtained as (ESTER):

L̂ = argmin
L
‖S− SΞ̂‖2

2. (171)
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One can also use this principle to obtain a pitch estimator as follows. The
sinusoidal frequencies are obtained using the empirical EVD of Ξ̂, i.e.,

Ξ̂ = CD̂C−1 (172)

with C containing the empirical eigenvectors of Ξ̂ and
D̂ = diag

(
[ ejψ̂1 · · · ejψ̂Lk ]

)
. Using the shift-invariance property, we

can write
S ≈ SCD̂C−1. (173)

Defining D̃ = diag
(
[ ejωk · · · ejωk Lk ]

)
, we introduce the cost function

J , ‖S− SCD̃C−1‖2
F from which the fundamental frequency can be

estimated as
ω̂k = argmin

ωk
J , (174)

where only D̃ depends on ωk . Note that also the order Lk can be
estimated in this manner.
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We could just as well have expressed the cost function as

J = ‖SC− SCD̃‖2
F , ‖V−WD̃‖2

F . (175)

The cost function in (175) can be expanded as

J =− 2Re
(
Tr
{

VD̃HWH
})

+ Tr
{

VVH}+ Tr
{

WD̃D̃HWH
}
. (176)

Introducing H = WHV and ignoring constant terms, the cost function is
redfined as

J , −2Re
(
Tr
{

HD̃H
})

= −2Re
( Lk∑

l=1
hle−jωk l

)
(177)

with hl = [H]ll . This is an extremely simple and smooth function, but it
cannot easily be generalized to the multi-pitch case.
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Experimental Results
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Figure: RMSE as a function of N (with PSNR = 40 dB) and PSNR (with
N = 400).
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Figure: Percentage of correctly estimated model orders as a function of N
(with PSNR = 40 dB) and PSNR (with N = 500).
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Figure: Percentage of correctly estimated model orders as a function of M
(with PSNR = 40 dB and N = 200).



Introduction Statistical Methods Filtering Methods Subspace Methods Amplitude Estimation Discussion

Discussion

• ZH
k G can be calculated efficiently using FFTs, i.e., subspace

methods are actually quite fast once the EVD has been computed.
• G and S can be updated recursively over time using subspace
trackers.

• The subspace methods are elegant solutions to the pitch estimation
problem and allows for finding the order too.

• The ESPRIT-based method is sensitive in several ways while the
MUSIC method is fairly robust.

• MUSIC offers partial decoupling of the multi-pitch estimation
problem (except for the orders).

• They have good statistical performance but depend on a high
SNR/white noise (but not the pdf).
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Amplitude Estimation

After estimating the signal’s fundamental frequencies, one often wishes
to estimate also the complex amplitudes of the periodic components.

With estimated amplitudes, we have a full parametrization of the signal
of interest. The signal can be re-synthesized using this information.

This can be done in a number of ways. Here, we will present some
different approaches, namely

• Least-squares based estimators, and
• Capon- and APES-based estimators
• Combined using WLS.
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Consider the unconstrained signal model for n = 0, . . . ,N − 1

x(n) =
L∑

l=1
alejψl n + e(n), (178)

where

(i) L as well as {ψl}L
l=1 are assumed known.

(ii) ψk 6= ψl for k 6= l .
(iii) e(n) denotes a zero mean, complex-valued, and assumed stationary

(and possibly colored) additive noise.

How should one proceed to estimate {al}L
l=1?
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Least-Squares Amplitude Estimation

Form x(0)
...

x(N − 1)

 =


1 . . . 1

ejψ1 . . . ejψL

...
. . .

...
ejψ1(N−1) . . . ejψL(N−1)


 a1

...
aL

+

 e(0)
...

e(N − 1)


or, using a vector-matrix notation,

x = Za + e. (179)

Then, the LS estimator is found as

â =
(
ZHZ

)−1 ZHx, (180)

which is an efficient estimator for all N ≥ L for white Gaussian noise.



Introduction Statistical Methods Filtering Methods Subspace Methods Amplitude Estimation Discussion

For colored Gaussian noise, LS estimators are asymptotically efficient,
i.e., for sufficiently large data lengths, the variance of â will reach the
corresponding CRLB, given by

CRLB(â) =
(
ZHQ−1Z

)−1
, (181)

where Q = E{eeH}, which for an additive unit variance white noise
implies that Q = I.

As an alternative, an approximate LS estimate may be formed from the L
largest peaks of the DFT of {x(n)}N−1

n=0 , i.e.,

âl =
1
N

N−1∑
n=0

x(n)e−jψl n, for l = 1, . . . , L. (182)

This estimator is also asymptotically efficient, but often (but not always)
performs worse than the exact LS estimate.
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Filter-based Amplitude Estimation
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An idea is to use the Capon spectral estimator for determining the
amplitude of the sinusoids.

Here, we wish to do so for several components simultaneously (i.e., the
harmonics). There are several ways to do so.
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Form N −M + 1 sub-vectors of length M, i.e.,

x(n) =
[
x(n) . . . x(n + M − 1)

]T
=


1 . . . 1

ejψ1 . . . ejψL

...
. . .

...
ejψ1(M−1) . . . ejψL(M−1)


 a1ejψ1n

...
aLejψLn

+

 e(n)
...

e(n + M − 1)


= Z(n)a + e(n), (183)

where

Z(n) = Z

 ejψ1n

. . .
ejψLn

 = ZDn. (184)
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The magnitude squared amplitude may thus be estimated as

Â2
l = E

{
|hH

l x(n)|2
}

= hH
l E
{

x(n)x(n)H}hl = hH
l Rhl , (185)

where the filter of interest, hl , is formed as

hl = argmin
hl

hH
l Rhl s.t. hH

l z(ψl ) = 1 (186)

=
R−1z(ψl )

zH(ψl )R−1z(ψl )
, (187)

with
z(ψl ) =

[
1 ejψl . . . ejψl (M−1)

]T (188)

This filter constrains the current frequency of interest only, trying to
minimizing the influence of the other components. This is the classical
Capon amplitude (CCA) estimator

Âl =
√

hH
l Rhl =

(
zH(ψl )R−1z(ψl )

)−1/2
(189)
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Alternatively, one may impose L constraints on each filter, such that

hH
l Z =

[
0 . . . 0︸ ︷︷ ︸

l−1

1 0 . . . 0︸ ︷︷ ︸
L−l

]
= bl , (190)

implying that

hH
l x(n) = hH

l

[
ZDna + e(n)

]
(191)

= alejψl n + hH
l e(n) (192)

This constraint yields the filter

hl = R−1Z
(
ZHR−1Z

)−1bl , (193)

suggesting the multiple constraint Capon amplitude (MCA) estimate

Âl =
√

hH
l Rhl =

√
bT

l
(
ZHR−1Z

)−1bl . (194)
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Weighted Least-Squares Amplitude Estimation

As a third option, one may form a weighted LS estimate of the amplitude
vector

â =

[N−M∑
n=0

ZH(n)Q̂−1Z(n)

]−1 [N−M∑
n=0

ZH(n)Q̂−1x(n)

]
, (195)

where Q̂ denotes an estimate of the noise covariance matrix. For
sufficiently large N and M, one may approximate Q̂ ≈ R̂, where

R̂ =
1

N −M + 1

N−M∑
n=0

x(n)xH(n) (196)

We term the resulting estimator the extended Capon amplitude (ECA)
estimator.



Introduction Statistical Methods Filtering Methods Subspace Methods Amplitude Estimation Discussion

One may improve the estimate of Q̂ by rewriting

x(n) = Z(n)a + e(n) =
L∑

k=1

[
akz(ψk)

]
︸ ︷︷ ︸

βk

ejψk n + e(n) (197)

suggesting the unstructured LS estimate of βk

β̂k =
1

N −M + 1

N−M∑
n=0

x(n)e−jψk n (198)

and the covariance matrix estimate

Q̂ = R̂−
L∑

k=1
β̂k β̂

H
k (199)

Using this estimate yields the extended APES amplitude (EAA) estimator.
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Finally, one may form a matched filterbank (MAFI) estimator using the
matrix filter H =

[
h1 . . . hL

]
, and express the design criteria as

H = min
H

Tr
{

HHRH
}

subject to HHZ = I (200)

= R−1Z
(
ZHR−1Z

)−1
. (201)

Then,
z(n) = HHx(n) = Dna + HHe(n) = Dna + w(n), (202)

with the lth index being

zl (n) = alejψl n + wl (n), (203)

suggesting the MAFI amplitude estimate

âl =
1

N −M + 1

N−M∑
n=0

zl (n)e−jψl n. (204)
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Overview and comments

We have introduced a number of amplitude estimators:

• NLS, CCA, MCA - estimating the magnitude of the amplitudes
• ECA, EAA, MAFI - estimating the complex-valued amplitudes

Most of these estimators benefit from being formed using the
(per-symmetric) forward-backward averaged covariance matrix estimate
in place of the forward-only estimate R̂, i.e., using

R̃ =
1
2

(
R̂ + JR̂T J

)
(205)

where J is the M ×M exchange matrix. Note that EAA needs to be
modified accordingly.
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Experimental Results
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Figure: RMSE (left) and bias (right) of the discussed amplitude estimators as a
function of the local SNR for N = 160 and M = 40.
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Figure: RMSE of the discussed amplitude estimators as a function of the data
length, (with M = bN/4c) (left) and filter length (with N = 160) (right).
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Comparison of Methods

In comparing the various methods, a number of parameters should be
compared, namely

• Statistical efficiency, i.e., how close is the performance of the
estimator to the CRLB.

• Thresholding behaviour, i.e., how does the method behave under
adverse conditions like low SNR or low N.

• Computational complexity, i.e., how does the complexity grow as a
function of N, M, Lk , etc.

• The complexity can be characterized in terms of a) initialization and
b) per-candidate frequency complexity.
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Statistical efficiency/Thresholding behaviour:

• The covariance-based methods like subspace and filtering methods
are inherently suboptimal and exhibit a gap to the CRLB.

• Maximum likelihood methods like the NLS/ANLS methods are
statistically efficient (for sufficiently large N).

• But both the Capon methods and the subspace methods work well
for multi-pitch signals where the ANLS method performs poorly.

• ANLS and the Capon methods perform poorly for low fundamental
frequencies, while the orthogonality-based subspace method and the
NLS method perform well.

• All the considered methods are consistent!
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Computational complexity (single-pitch):

• The NLS method has complexity O(L2
kN + L3

k + LkN2 + N2) per
grid point and requires no initialization (recall that Lk � M ≤ N).

• The ANLS method has complexity O(Lk) per grid point and requires
that an FFT and the power is computed as initialization.

• The WLS method has complexity O(L3
k) (given unconstrained

frequency estimates).
• The Capon based methods have a complexity of
O(L3

k + ML2
k + M2Lk) per grid point (discounting the order-recursive

implementation) and an initialization of O(M3).
• The orthogonality-based subspace method has complexity
O(Lk(M − Lk)) per grid point and as initialization requires that the
EVD of Rk is computed which is O(M3) and M FFTs and power
computations.

• The shift-invariance-based method has complexity O(Lk) per grid
point and an initialization of O(M3 + L3

k + M2Lk + L2
kM).
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Open Issues and Directions for Future Research
Not yet mature and tested technology. Many things need to be done:

• Extensive tests on databases
• Taking more specific knowledge into account
• Fast implementations
• Exact estimators for low frequencies
• Multiple channels
• How to take colored noise into account
• Inharmonicity (modified models)
• Spectral smoothness (e.g., filter model)
• Non-parametric vs. parametric (e.g., spectrogram modeling)
• Temporal modeling (e.g., HMMs, optimal segmentation, smoothing)
• Modified models: what do we really need?
• Order estimation and model selection (still an unsolved problem)
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Conclusions

• Fundamental frequency estimation can be solved using a number of
tractable methods rooted in estimation theory.

• The parametric approach offers high-resolutions estimates and
predictable behavior.

• Multi-pitch estimation is complicated and sometimes not a
well-defined problem.

• Methods based on optimal filtering particularly appear especially
promising for multi-pitch estimation.

• A full parametrization useful for many applications.
• In summary, the parametric methods form a quite promising
alternative to the traditionally used methods.

• This is especially so in applications that require very accurate
estimates (e.g., tuning, transcription/analysis of vibrato, glissando).
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Shameless Plug

Book and MATLAB toolbox available!

Free download (if subscription) from http://www.morganclaypool.com

Papers and MATLAB code available at http://imi.aau.dk/∼mgc
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