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Abstract
This document contains a brief introduction to pitch estimation along with some practical
and relatively simple methods for pitch estimation. It requires some basic understanding
of complex numbers, Fourier series and the Fourier transform and basic signal process-
ing operations and concepts like filtering, z-transforms, etc. It is intended as a lecture
note for the students who follow the course Sound and Music Computing. It should be
noted that the treatment herein is rather simplified and does not rely on statistical princi-
ples, although all the presented methods can (and should) be interpreted in a statistical
framework. For a more in-depth treatment of the matter, we refer the interested reader
to [1].

Introduction
A key property of many sounds, and in particular those that we think of as music, is the
pitch. In the context of music, the American Standard Association defines the term pitch
as “that attribute of auditory sensation in terms of which sounds may be ordered on a
musical scale”. As such, it is strictly speaking a perceptual phenomenon. It is, how-
ever, caused by physical stimuli that exhibit a certain behaviour. Signals that cause the
sensation of pitch are, broadly speaking, the signals that are well-described by a set of
harmonically related sinusoids, meaning that their frequencies are approximately integral
multiples of a fundamental frequency. Signals that have frequencies that are integral mul-
tiples of a fundamental frequency are what is commonly referred to as periodic. Periodic
signals have the following property for n = 0, . . . , N − 1:

x(n) = x(n− τ), (1)

or, equivalently x(n) = x(n+τ), where x(n) is a real, discrete-time signal (i.e., a sampled
signal) and τ is the so-called pitch-period, i.e., the smallest time interval over which the
signal x(n) repeats itself measured in samples. Here, it should be stressed that while
x(n) is defined for integers n, τ is not generally an integer. In fact, pitch is a continuous
phenomenon and it is hence not accurate to restrict τ to only integer values, although
this is often done. This means that we need to be able to implement fractional delays to
use (1). Note that the assumption that (1) holds over n = 0, . . . , N − 1 implies that the
characteristics of the signal x(n) do not change over this interval. Such a signal is said to
be stationary, and for audio signals N corresponding to anywhere between 20 and 80 ms
is common. In Figure 1 an example of a periodic signal is shown. It has a pitch of 150
Hz, which corresponds to a pitch-period of 6.7 ms.
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Figure 1: Example of a periodic signal. This signal has a pitch of 150 Hz corresponding
to a pitch-period of 6.7 ms.

Functions that perfectly obey (1) can be decomposed using a Fourier series1 as

x(n) =
L∑
l=1

Al cos(ω0ln+ φl). (2)

This is also known as the harmonic model. The quantity ω0 is called the fundamental fre-
quency and L is the number of harmonics, where the term harmonic refers to each term
in the sum of (2). Al > 0 and φl ∈ (−π, π) are the amplitude and the phase of the lth har-
monic, respectively. The amplitude determines how dominant (or loud) the various har-
monics are while the phase can be thought of as representing a time-shift of the harmonic
as we can express the argument of the cosine function in (2) as ω0ln + φl = ω0l(n− nl)
with nl = φl

ω0l
. The number of harmonics L can generally be any integer between 1 and

π
ω0

, and it is generally not possible to say in advance how many harmonics are going to
be present. In this connection, it should be stressed that L is absolutely critical when
trying to find ω0 from a signal x(n). For signals that can be expressed using (2), the pitch,
i.e., the perceptual phenomenon, and the fundamental frequency are the same. It is inter-
esting to note, that while the harmonic is comprised as a sum of a number of individual
components, these are perceived as being one object by the human auditory system. This
object is the same as a musical note played by an instrument (e.g., guitar, flute) and the
human voice (for the parts known as voiced speech). Moreover, the perceptually comple-
mentary property of timbre is closely related to the how the amplitudes Al change over
l. To express the fundamental frequency in Hertz, denoted f0, one must use the relation
ω0 = 2π f0

fs
, where fs is the sampling frequency. The pitch-period (in samples) and the

pitch are each others’ reciprocal, i.e., ω0 = 2π 1
τ
, and to convert the pitch period into

time measured in seconds, one must use τ
fs

. Pitch estimation is then the art of finding
ω0 from an observed signal whose characteristics are not known in detail. The spectrum
(i.e., the Fourier transform) of the signal in Figure 1 is shown in Figure 2. It can be seen
that the signal has five harmonics and that the peaks occur at frequencies that are integral
multiples of a fundamental frequency of 150 Hz.

1Strictly speaking, this is not a Fourier series, as, among other details, these are usually defined for x(n)
over a time interval corresponding to the pitch-period τ .
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Figure 2: Spectrum of a periodic signal. The signal can be seen to have five harmonics
with decreasing amplitudes. The distance between the harmonics corresponds to the pitch,
i.e., 150 Hz.

Comb Filtering Method
An intuitive approach to finding ω0, or, equivalently, τ is to use the relation in (1) directly.
To obtain an estimate of τ from (1) we can simply subtract the right-hand side from the
left-hand side, i.e., x(n) − x(n − τ) = 0 and then choose the lowest τ for which this
holds2. However, in doing so, we are faced with a number of problems. Firstly, the signal
may not be perfectly periodic but may be changing slowly. Secondly, there will always be
background noise present when dealing with real-life signals. In both cases, the relation
in (1) is only approximate, i.e., x(n) ≈ x(n− τ), so we can instead measure the non-zero
difference, e(n) as x(n)−x(n−τ). We call this difference the modeling error. To account
for the periodic signal changing slowly, we can also include a positive scale factor a close
to 1 to account for this so that x(n) ≈ ax(n− τ), and define the modeling error as

e(n) = x(n)− ax(n− τ). (3)

Taking the z-transform of this yields

E(z) = X(z)− aX(z)z−τ (4)
= X(z)(1− az−τ ). (5)

From this we see that this operation can be thought of as a filtering of x(n) to yield the
modeling error signal e(n), and the transfer function of the filter is

H(z) =
E(z)

X(z)
= 1− az−τ . (6)

This is a well-known filter known as the inverse comb filter. As can be seen, this filter
contains only a feed-forward path and no feedback path, so it is inherently stable. Ana-
lyzing the filter as a polynomial, it has zeros located at a distance of a from the origin at
angles 2π

τ
k for k = 1, 2, . . . , τ . To use the inverse comb filter to find an estimate of the

pitch-period, we must design this filter for different τs (corresponding to the fundamental

2If x(n) = x(n−τ) then it is also true that x(n) = x(n−2τ), x(n) = x(n−3τ), and x(n) = x(n−kτ)
for any integer k. The pitch-period is the lowest possible value for which x(n) = x(n− τ) hold.



frequencies in the audible range), apply it to the signal and then somehow measure how
large the modeling error, as defined in (3), is. A normal way of measuring the size of
errors is using the mean squared error (MSE), i.e.,3

J(τ) =
1

N − τ

N−1∑
n=τ

e2(n). (7)

A function, like J(·) in (7), which we use to measure the goodness (or badness) of some-
thing, is generally referred to as a cost function. This cost function is a function of τ since
we will get different errors for different τs. We then pick as our estimate, the τ for which
(7) is the minimum, denoted τ̂ . We write this as4

τ̂ = argmin
τ
J(τ), (8)

which is what we call an estimator. The quantity τ̂ is called an estimate and the process
of finding it is called estimation. Note that we generally denote estimates as ·̂. Using (3),
we can also express this as

τ̂ = argmin
τ

1

N − τ

N−1∑
n=τ

(x(n)− ax(n− τ))2. (9)

Note that a suitable range over which to compute (7) must be chosen. For speech, this
would be τs corresponding to fundamental frequencies from 60 to 440 Hz. For a sampling
frequency, fs, of 8 kHz (which is common for speech) this would corrrespond to τs going
from 18 samples to 133 samples. We have until now ignored the issue of which filter
coefficient a to use. It is actually possible to find an optimal a > 0 in sense of the MSE,
but in this connection, it is not that critical, and one can simply choose a to be close to
1 or even 1. The method that we have here presented is known as the comb filtering
method for pitch estimation [2]. An obvious problem with this approach is that to directly
compute (7), we are restricted to using only integer τ . To mitigate this, we would have to
include a method for fractional delays in our estimator. In Figure 3 the cost function in
(7) is shown computed for different pitches (i.e., different τ ) for the signal in Figure 1.

Auto-Correlation and Related Methods
Perhaps the most universally applied principle for pitch estimation is the so-called auto-
correlation method. We will here derive it based on the comb filtering approach as follows.
Suppose that the signal is perfectly periodic, so that a = 1 in (3). In that case, we have
that we should measure the modeling error for different τ as

e(n) = x(n)− x(n− τ). (10)

Inserting this expression into the definition of the MSE in (7), we obtain

J(τ) =
1

N − τ

N−1∑
n=τ

e2(n) (11)

=
1

N − τ

N−1∑
n=τ

(x(n)− x(n− τ))2. (12)

3We have here needed to define the summation range to account for x(n) only being defined for n =
0, 1, . . . , N − 1.

4The notation means the following: maxx f(x) denotes the maxmium value f? of the function f(x)
over all possible x. argmaxx f(x) is then the value x? of x for which f(x) = f?. So, f? = maxx f(x)
and x? = argmaxx f(x).
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Figure 3: Cost function in (7) for the comb filtering method as a function of the pitch for
the signal in Figure 1. The pitch estimate is obtained by finding the smallest value of the
cost function.
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Figure 4: Auto-correlation function for the signal in Figure 1. The peaks indicate lags for
which the signal resembles itself, i.e., where it exhibits high correlation.

Writing this out, we obtain

J(τ) =
1

N − τ

N−1∑
n=τ

(x(n)− x(n− τ))2 (13)

=
1

N − τ

N−1∑
n=τ

x2(n) +
1

N − τ

N−1∑
n=τ

x2(n− τ)− 2
1

N − τ

N−1∑
n=τ

x(n)x(n− τ). (14)

From this, we can make a number of observations. The first term, 1
N−τ

∑N−1
n=τ x

2(n), is
the same as the power (or variance) of the signal x(n) and does not depend on τ , i.e.,
it is constant. The second term, 1

N−τ
∑N−1

n=τ x
2(n − τ), which is the power of the signal

x(n− τ), does appear at first to depend on τ , but since we have assumed that the signal is
stationary, this should be equivalent to the first term and is, hence, also constant. So, the



only part that actually changes with τ is this:

R(τ) =
1

N − τ

N−1∑
n=τ

x(n)x(n− τ). (15)

This quantity is known in signal processing terms as the auto-correlation function. It is a
function of τ , which is commonly referred to as the lag in this context, and from (14) it
can be seen to measure the extent to which x(n) and x(n− τ) are similar. In Figure 4, the
auto-correlation function is shown for the signal in Figure 1. The periodicity of that signal
can be seen from the auto-correlation function also being periodic. For τ = 0 we get that
R(0) = 1

N−τ
∑N−1

n=τ x
2(n), which is the power of the signal. If the signal is perfectly

period for τ then R(τ) = R(0). Moreover, it can easily be shown that R(τ) ≤ R(0) for
all τ . Hence, the highest possible value of R(τ) that we can hope to obtain is the same as
R(0). Since we would like the difference x(n)−x(n−τ) to be small, it follows from (14)
that we should make R(τ) as large as possible. This idea leads to the following estimator:

τ̂ = argmax
τ

R(τ) (16)

= argmax
τ

1

N − τ

N−1∑
n=τ

x(n)x(n− τ) (17)

This estimator is known as the auto-correlation method [3,4]. In Figure 5 the cost function
for the auto-correlation method is shown as a function of the the pitch (in Hertz) for the
periodic signal in Figure 1. It suffers from many of the same problems as the comb
filtering approach, which is no surprise since it is based on the same principle (and they
are identical in certain special cases). Despite this, it is the most commonly used principle
for pitch estimation, and many variations of this method has been introduced throughout
the years, many of which basically boil down to modifying (12) to different measures of
the goodness of the fit, which more generally can be written as

J(τ) =

(
1

N − τ

N−1∑
n=τ

(x(n)− x(n− τ))p
) 1

p

. (18)

For example, the so-called average magnitude difference function (AMDF) method is ob-
tain from this by setting p = 1. Also, various summation limits (e..g, ones that do not
depend on τ or use the same number of terms for all computations) and normalization pro-
cedures have been considered, but they are all based on the same fundamental principle.

Harmonic Summation
The next (and final) approach to pitch estimation is based on the Fourier transform of the
model in (2). The Fourier transform of a signal x(n) over n = 0, 1, . . . , N − 1 is defined
as

X(ω) =
N−1∑
n=0

x(n)e−jωn, (19)

for 0 ≤ ω ≤ 2π. The quantity |X(ω)|2 is known as the power spectrum. It should be noted
that even though the signal x(n) is a discrete function of n,X(ω) is a complex, continuous
function of ω, but in practice we often compute it for a discrete set of frequencies using
the fast Fourier transform (FFT). Let us assume that the signal in (19) is not perfectly
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Figure 5: Cost function for the auto-correlation method, i.e., (15), as a function of the
pitch for the signal in Figure 1. Using this method, the pitch estimate is obtained by
finding the highest peak.

periodic. In that case, we might think of fitting the model in (2) to x(n) and choosing the
fundamental frequency ω0 that best fits. In that regard, we can think of (2) as a model
and we can subtract the right-hand side of (2) from the left-hand side and measure the
difference, i.e.,

e(n) = x(n)−
L∑
l=1

Al cos(ω0ln+ φl). (20)

We can then apply the MSE , as defined in (7), to measure the goodness of our model, i.e.,

J(ω0) =
N−1∑
n=0

(
x(n)−

L∑
l=1

Al cos(ω0ln+ φl)

)2

. (21)

Then, it can be shown that it does not matter whether we measure the MSE on e(n) or its
Fourier transform E(ω), i.e.,

J(ω0) =
N−1∑
n=0

e2(n) =
1

2π

∫ 2π

0

|E(ω)|2dω. (22)

It can then be shown, that for large N , this MSE is given by

J(ω0) =
1

2π

∫ 2π

0

|X(ω)|2dω − 2

N

L∑
l=1

|X(ω0l)|2. (23)

The first term, i.e., 1
2π

∫ 2π

0
|X(ω)|2dω, is just the power of the signal x(n) computed from

the Fourier transform, and is constant. The second term, i.e., 2
N

∑L
l=1 |X(ω0l)|2 is the

sum of the power of the individual harmonics, i.e., A2
l

2
, when it is computed for the true

fundamental frequency. To minimize the MSE in (23), it can be observed that we must
maximize 1

N

∑L
l=1 |X(ω0l)|2 as it is subtracted from the first term. The basic idea behind

the harmonic summation method [5] is that for a noise free, infinitely long and perfectly
periodic signal, we have that

1

N
|X(ω)|2 ≈

{
A2

l

2
for ω = ω0l

0 for ω 6= ω0l
. (24)



Hence, by measuring
∑L

l=1 |X(ω0l)|2 for different ω0, one can obtain an estimate of the
fundamental frequency by picking the one for which the sum is the maximum, i.e.,

ω̂0 = argmax
ω0

L∑
l=1

|X(ω0l)|2, (25)

where we must then search over the audible range of ω0s that obey ω0 ≤ π
L

. This estimator
is the harmonic summation method. The cost function used in this method is shown in
Figure 6 for the periodic signal in Figure 1. The pitch estimate is obtained by locating
the highest peak in the cost function. It should be noted that the number of harmonics,
L, must be known for this method to work. The determination of L is, though, a difficult
problem known as model order estimation or model selection. Some simple heuristics
can often be applied in practice, though, by, for example, counting the number of peaks
above a threshold in the spectrum.

100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pitch [Hz]

C
o
s
t

Harmonic Summation

Figure 6: Cost function for the harmonic summation method, i.e., for the estimator in
(25), as a function of the pitch for the signal in Figure 1. Using this method, the pitch
estimate is obtained by finding the highest peak.

One can obtain another method from (24). Since 1
N
|X(ω)|2 is only non-zero for fre-

quencies equal to the those of the harmonics, a multiplication of the spectrum evaluated
for a set of candidate fundamental frequencies is only non-zero for the true fundamental
frequency. This principle can be stated as

ω̂0 = argmax
ω0

L∏
l=1

|X(ω0l)|2, (26)

we refer to this as the harmonic product method [5]. Taking the logarithm5, it can also be
stated as

ω̂0 = argmax
ω0

ln
L∏
l=1

|X(ω0l)|2 = argmax
ω0

L∑
l=1

ln |X(ω0l)|2, (27)

which is similar to the harmonic summation method, only it operates on the log-power
spectrum. An advantage of using (27) over (25) is that it is possible to use the former for

5We should not really do this as we have assumed that |X(ω)| is zero for some values.



also finding the number of harmonics L. It is, however, extremely sensitive to deviations
in the frequencies of the harmonics from integral multiples of the fundamental frequency.
An example of a typical cost fucntion for the harmonic product method is shown in Figure
7, as before for the periodic signal in Figure 1. As can be seen, there is a very sharp peak
at the 150 Hz.
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Figure 7: Cost function for the harmonic product method, i.e., for the estimator in (27),
as a function of the pitch for the signal in Figure 1. Using this method, the pitch estimate
is obtained by finding the highest peak.
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