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Abstract

This report provides a short overview of different methods that can be used for
simulating room acoustics and focusses on the imagemethod that was proposed by
Allen and Berkley in 1979. The image method is probably one of the methods most
commonly used in the acoustic signal processing community, and will therefore be
discussed in more detail. A mex-function, which can be used in MATLAB, has been
created to generate multichannel Room Impulse Responses using the image method.
This function enables the user to control the reflection order, room dimension and
microphone directivity.

1 Introduction

Many people who are working in the field of acoustic signal processing reach a point where
they want to simulate room acoustics. This report gives a short overview of different methods
that can be used for simulating room acoustics. The image method [1], which was proposed
by Allen and Berkley in 1979, is probably one of the methods most commonly used in
the acoustic signal processing community. This method is closely related to the so-called
wave equation and its frequency domain counterpart called the Helmholtz equation. These
equations describe the propagation of acoustic waves through fluids (gas or liquid).

A mex-function, which can be used in MATLAB, has been created to generate multi-
channel Room Impulse Responses (RIR) using the image method. This function enables the
user to control the reflection order, room dimension and microphone directivity. Another
advantage of this mex-function, compared to a standard MATLAB function, concerns the
computation time. We have found that our mex-function was around 100 times faster than
the standard MATLAB code on our test machine.

This report is organized as follows. The wave equation and the Helmholtz equation
are discussed in Sections 2 and 3 respectively. In Section 4 a short overview of different
methods that can be used to simulate room acoustics is provided. Allen and Berkley’s
method is described in Section 5. A short description of the mex-function implementation
is provided in Section 6. Some examples are presented in Section 7. Finally, a short summary
is provided in Section 8. Please note and respect the copyrights in Section 11.

2 Wave Equation

In principle, any complex sound field can be considered as a superposition of numerous
simple sound waves (e.g., plane waves), and their propagation within a room can be con-
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sidered linear if the properties of the medium in which the waves travel are assumed to be
homogeneous, at rest, and independent of wave amplitude [2]. In physics, the wave equation
governs the propagation of waves through fluids (gas or liquid). The form of the equation is
a second order partial differential equation. The equation describes the evolution of velocity
potential or sound pressure p(r, t) as a function of position r = [x, y, z] and time t.

For a homogeneous medium undergoing inviscid fluid flow, one can linearize the equations
governing the dynamic behaviour of the fluid, namely the Euler’s equation (i.e., Newton’s
2nd law applied to fluids), the continuity equation, and the state equation, to obtain the
wave equation

∇2p(r, t)− 1

c2
∂2p(r, t)

∂t2
= 0, (1)

where

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(2)

is the Laplacian expressed in the Cartesian coordinates (x, y, z), and c is the speed of
sound. The wave equation accurately describes the pressure in the sound field provided
|p(r, t)| � ρ0c

2, where ρ0 is the density of the propagation medium at equilibrium.
In practice, two types of inhomogeneities occur in the medium: i) scalar inhomogeneities

(spatial distribution of sound speed and air density), e.g., due to temperature variations in
the medium, and ii) vector inhomogeneities (spatial distribution of particle mean velocity),
e.g., due to the presence of fans or an air conditioning. However, the effects of these
inhomogeneities are so small that they can often be ignored in room acoustics.

In order to calculate the sound field emanating from a source in a specific room we
need an additional source function in (1) and boundary conditions that describe the sound
reflection and absorption at the walls. Let s(r, t) denote the source function, then the wave
equation is given by

∇2p(r, t)− 1

c2
∂2p(r, t)

∂t2
= −s(r, t). (3)

3 Helmholtz Equation

Let us consider the wave equation in the frequency domain. The Fourier transform is defined
as

P (r;ω) , F{p(r, t)}(ω) =

∫ ∞
−∞

p(r, t) exp(iωt) dt, (4)

where exp(x) = ex and i =
√
−1. By applying the Fourier transform to (1) the time-

independent Helmholtz equation is obtained, i.e.,

∇2P (r;ω) + k2 P (r;ω) = 0, (5)

where k denotes the wave number that is related to the angular frequency ω and the wave
length λ through

k =
ω

c
=

2π

λ
.

If there is a harmonic disturbance which is producing the waves, for which the source
function is given by s(r, t) = S(r;ω)e−iωt, then the Helmholtz equation is given by

∇2P (r;ω) + k2 P (r;ω) = −S(r;ω). (6)

For a unit-amplitude harmonic point source at position rs = [xs, ys, zs] we have S(r;ω) =
δ(r−rs) = δ(x−xs)δ(y−ys)δ(z−zs), where δ(·) denotes the Kronecker delta function. The



3

partial differential equation in (6) can be solved by first solving the following inhomogeneous
equation:

∇2H(r, rs;ω) + k2H(r, rs;ω) = −δ(r− rs), (7)

where H(r, rs;ω) is the Room Transfer Function (RTF), or Green’s function. For an arbi-
trary source function S(rs;ω) the desired source pressure can then be calculated using the
following relation

P (r;ω) =

∫∫∫
Vs
H(r, rs;ω)S(rs;ω) drs, (8)

where Vs denotes the source volume, and drs = dxs dys dzs is the differential volume
element at position rs. The sound pressure p(r, t) can now be obtained using the inverse
Fourier transform of (8).

The conventional way to solve (7) is to find an orthogonal set of eigenfunctions associated
with the Laplacian operator and then to expand H(r, rs;ω) as a sum of eigenfunctions.
Specifically, a function Ψm(r;ω) that satisfies the homogenous equation (∇2+k2)Ψm(r;ω) =
0 over a certain interval and satisfies certain boundary conditions at the end of the interval,
is called an eigenfunction. Subsequently, a general expression for the Green’s function
H(r, rs;ω) in an arbitrary sound field can be obtained using the eigenfunctions:

H(r, rs;ω) =

∞∑
m=0

Cm(rs;ω) Ψm(r;ω), (9)

where each coefficient Cm(rs;ω) depends on the position of the sound source. The eigen-
functions depend on the boundary conditions imposed by the enclosed space.

Free Space Green’s Function

For an omnidirectional point source in an unbounded space, i.e., free space, the Green’s
function is [2]

H(r, rs;ω) =
exp(iωc ‖r− rs‖)

4π ‖r− rs‖
, (10)

where ‖ · ‖ denotes the Euclidean norm.

Classical Rectangular Room

In a rectangular room with physical dimensions (Lx, Ly, Lz) and rigid perfectly reflecting
walls the eigenfunctions in Cartesian coordinates are [2]

Ψm(r) = cos

(
mxπ

Lx
x

)
cos

(
myπ

Ly
y

)
cos

(
mzπ

Lz
z

)
, (11)

where m = (mx,my,mz) and mv ∈ {x, y, z} are nonnegative integers. Let us define kv =
mvπ/Lv for v ∈ {x, y, z}, then we can write (11) as

Ψm(r) = cos(kx x) cos(ky y) cos(kz z). (12)

The eigenfunctions are often referred to as modes and have a simple physical interpretation
as three-dimensional standing waves. The corresponding eigenvalues are k2m = k2x+k2y +k2z .

The solution for the inhomogeneous equation (7) for a classical rectangular room is [2]

H(r, rs;ω) =
∑

m∈M

Ψm(r)Ψ∗m(rs)

Λm(k2 − k2m)
, (13)
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Figure 1: Room acoustic models are based on sound rays (ray-based), on solving the wave
equation (wave-based) or some statistical method [3].

whereM = {(mx,my,mz) : mx,my,mz ∈ N0} denotes a set that contains all desired triples
m and Λm is a normalization constant for the associated eigenvector defined by∫∫∫

V
Ψm(r)Ψ∗n(r) dr =

{
Λm, for m = n;

0, otherwise,
(14)

where V = {(x, y, z) : 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, 0 ≤ z ≤ Lz} is the entire space of the room
and dr = dx dy dz is the differential volume element at position r.

Equation (13) reveals the frequency domain structure of the RTF. The eigenfrequencies
ωm, related to the eigenvalues through km = ωm

c , are also known as the resonance frequencies
of the room. At each eigenfrequency ωm, the standing wave pattern of mode m resonates
strongly. From (13) it can be seen that H(r, rs;ω) increases without bound as ω → ωm.
Room mode Ψm(r) is said to be excited at eigenfrequency ωm (i.e., Ψm(r) makes a large
contribution to sound pressure at this frequency). All rooms possess distinct resonances
at low frequencies. However, in practical rooms, where walls are non-rigid and finitely
absorbing, eigenvalues km have imaginary components that provide damping of resonance
modes [2]. In that case km = ωm

c + i δmc , where δm denotes the damping constant (Q-factor).
Assuming that δm � ωm, (13) results in

H(r, rs;ω) = c2
∑

m∈M

Ψm(r)Ψ∗m(rs)

Λm(ω2 − ω2
m − 2iδmωm)

. (15)

The inverse Fourier transform of the frequency response of the room described by (13)
leads to a RIR, h(r, rs, t). The form of (13) justifies the use of some well-known modelling
techniques used in signal processing such as, for example, the pole-zero model.

4 Simulating Room Acoustics

Mathematically the sound propagation is described by the wave equation. An impulse re-
sponse from a source to a microphone can be obtained by solving the wave equation. Since
it can seldom be expressed in an analytic form the solution must be approximated. There
are three main modelling methods, as illustrated in Figure 1, viz., wave-based, ray-based
and statistical [3]. The ray-based methods, such as the ray-tracing [4] and the image-
source method [1], are the most often used. The wave-based methods, such as the Finite
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Element Method (FEM), Boundary Element Method (BEM) [5, 6] and Finite-Difference
Time-Domain (FTDT) [7] methods, are computational more demanding. In real-time au-
ralization1 the limited computation capacity requires simplifications. A frequently used
simplification consists of modelling the direct path and early reflections individually and
the late reflections by recursive digital filter structures. The statistical modelling meth-
ods, such as the Statistical Energy Analysis, have been widely used in aerospace, ship and
automotive industry for high frequency noise analysis and acoustic designs. They are not
suitable for auralization purposes since those methods do not model the temporal behaviour
of a sound field.

Wave-based methods

The most accurate results can be achieved by wave-based methods. An analytical solution
for the wave equation can be found only in extremely simple cases such as a rectangular room
with rigid walls. Therefore, numerical methods such as FEM and BEM [5,6] are often used.
The main difference between these two element methods is in the element structure. In FEM,
the space is divided into volume elements, while in BEM only the boundaries of the space are
divided into surface elements. The elements interact with each other according to the basics
of wave propagation. The sizes of these elements have to be much smaller than the size
of the wavelength for every particular frequency. At high frequencies, the required number
of elements becomes very high, resulting in a large computational complexity. Therefore,
these methods are suitable only for low frequencies and small enclosures.

Another method for room acoustics simulation is provided by the FDTD method [7, 8].
The main principle of this method is that derivatives in the wave equation are replaced by
corresponding finite differences. The FDTD method produces impulse responses that are
better suited for auralization than FEM and BEM. The main benefit of the element methods
over FDTD methods is that one can create a denser mesh structure where required, such as
locations near corners or other acoustically challenging places.

In all wave-based methods, the most difficult part is the definition of the boundary
conditions and geometrical description of the objects. Typically a complex impedance is
required, but it is hard to find that data in existing literature.

Ray-based methods

The ray-based methods are based on geometrical room acoustics [2]. The most commonly
used ray-based methods are the ray-tracing [4] and the image method [1]. The main differ-
ence between these methods is the way the reflection paths are calculated [3]. To model an
ideal impulse response from a source to a receiver all possible sound reflection paths, com-
monly called rays, should be discovered. In ray-tracing methods the sound power emitted
by a sound source is described by a finite number of rays. These rays propagate through
space and are reflected after every collision with the room boundaries. During that time,
their energy decreases as a consequence of the sound absorption of the air and of the walls
involved in the propagation path. When the rays reach the receiver, an energy calculation
process is performed. When all rays are processed the impulse response is obtained. Rays
can be selected from a set of randomly distributed angles, uniformly distributed angles or
from a restricted set of angles. Due to this the ray-tracing methods are by no means ex-
haustive, whereas the image method finds all the rays. However, while the image method
is limited to geometries that are formed by planer surfaces the ray-tracing method can be
applied to geometries that are formed by arbitrary surfaces.

1Auralization is the process of rendering audible, by physical or mathematical modelling, the sound field
of a source in a space, in such a way as to simulate the binaural listening experience at a given position in
the modelled space.
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Figure 2: Path involving one reflection obtained using one image.

It should be mentioned that all ray-based methods are based on energy propagations.
This means that all effects involving phase differences such as refraction or interference are
neglected. This is admissible if the sound signals of interest are not sinusoids or other signals
with small frequency bandwidth but are composed of many spectral components covering
a wide frequency range. Then it can be assumed that constructive and destructive phase
effects cancel each other when two or more sound field components superimpose at a point,
and the total energy in the considered point is simply obtained by adding their energies.
Components with this property are often referred to as mutually incoherent [9].

5 Allen and Berkley’s Image Method

The image model can be used to simulate the reverberation in a room for a given source
and microphone location, and is discussed in Section 5.1. Using the image method Allen
and Berkley [1] developed an efficient method to compute a Finite Impulse Response (FIR)
that models the acoustic channel between a source and a receiver in rectangular rooms. The
image method and some additional refinements will we discussed in Section 5.2. The close
relation of the image method and the Helmholtz equation is shown in Section 5.3.

5.1 Image Model

Figure 2 shows a sound source S located near a rigid reflecting wall. At destination D two
signals arrive, one from the direct path and a second one from the reflection. The path
length of the direct path can be directly calculated from the known locations of the source
and the destination. Also shown is an image of the source, S′, located behind the wall at a
distance equal to the distance of the source from the wall. Because of symmetry, the triangle
SRS′ is isosceles and therefore the path length SR + RD is the same as S′D. Hence, to
compute the path length of the reflected path, we can construct an image of the source and
compute the distance between destination and image. Also, the fact that we are computing
the distance using one image means that there was one reflection in the path.

Figure 3 shows a path involving two reflections. The length of this path can be obtained
from the length of S′′D. In Figure 4 the length of a path involving three reflections is
obtained from the length of S′′′D. These figures can also be extended to three dimensions
to take into account reflections from the ceiling and the floor.

In general the path lengths (and thus the delays) of reflections can be obtained by
computing the distance between the source images and the destination. The strength of the
reflection can be obtained from the path length and the number of reflections involved in
the path. The number of reflections involved in the path is equal to the level of images that
was used to compute the path.
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Figure 3: Path involving two reflections obtained using two images.
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Figure 4: Path involving three reflections obtained using three images.
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5.2 Image Method

Consider a rectangular room with length, width and height given by Lx, Ly and Lz. Let
the sound source be at a location represented by the vector rs = [xs, ys, zs] and let the
microphone be at a location represented by the vector r = [x, y, z]. Both vectors are with
respect to the origin, which is located at one of the corners of the room. The relative
positions of the images measured with respect to the receiver position and obtained using
the walls at x = 0, y = 0 and z = 0 can be written as

Rp = [(1− 2q)xs − x, (1− 2j)ys − y, (1− 2k)zs − z] . (16)

Each of the elements in the triple p = (q, j, k) can take on values 0 or 1, resulting in eight
different combinations that specify a set P, i.e., P = {(q, j, k) : q, j, k ∈ {0, 1}}. When the
value of p is 1 in any dimension, then an image of the source in that direction is considered.
It should be noted that some of these images correspond to higher order reflections. To
consider all images, we add the vector Rm to Rp where

Rm = [2mxLx, 2myLy, 2mzLz], (17)

where mx, my, and mz are integer values. Each of the elements of the triple m =
(mx,my,mz) takes on values from −N to +N . The reflection order related to an image at
the position Rp + Rm + r is given by

Op,m = |2mx − q|+ |2my − j|+ |2mz − k|. (18)

The distance between any source image and the microphone can be written as

d = ‖Rp + Rm‖ . (19)

The time delay of arrival of the reflected sound ray corresponding to any source image can
be expressed as

τ =
d

c
=
‖Rp + Rm‖

c
, (20)

where c denotes the sound velocity in meters per second.
The impulse response for this source and microphone location can now be written as

h(r, rs, t) =
∑
p∈P

∑
m∈M

β|mx−q|
x1

β|mx|
x2

β|my−j|
y1 β|my|

y2 β|mz−k|
z1 β|mz|

z2

δ(t− τ)

4πd
, (21)

whereM = {(mx,my,mz) : −N ≤ mx,my,mz ≤ N} denotes a set that contains all desired
triples m. The quantities βx1

, βx2
, βy1 , βy2 , βz1 and βz2 are the reflection coefficients of the

six walls. Note that the walls at v = 0 with v ∈ {x, y, z} correspond to βv1 , and that the
walls at v = Lv with v ∈ {x, y, z} correspond to βv2 . The elements of the triple p are 0 or
1, which means that there are 8 different combinations, (0, 0, 0) to (1, 1, 1). The elements of
the triple m range from −N to +N , which means that there are (2N + 1)3 combinations.
Therefore, for a given N , this method computes 8(2N + 1)3 different paths. The delays
of the impulses corresponding to these paths are computed using (20) and the strengths of
these impulses are multiplied by reflection coefficients as many times as there are reflections.
Once the impulse response has been computed this way, the source signal can be convolved
with the impulse response to simulate the signal picked up by the microphone.

An important consideration while simulating the discrete version of this impulse response
using a computer is that the delays given by (20) do not always fall at sampling instants.
Ideally, the discrete version of (21) is given by

h(r, rs, n) =
∑
p∈P

∑
m∈M

β|mx−q|
x1

β|mx|
x2

β|my−j|
y1 β|my|

y2 β|mz−k|
z1 β|mz|

z2

LPF{δ(n− τ fs)}
4πd

, (22)
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Figure 5: Comparison of the shifted and low-pass impulse method.

where fs is the sampling frequency and LPF{·} denotes a theoretically perfect Low-Pass
Filter with cut-off frequency fs/2. In [1] the time-of-arrival (in samples) was shifted to the
nearest integer value. Hence, the following approximation was made

LPF{δ(n− τ fs)} ≈ δ(n− round{τ fs}). (23)

Although this distortion can be ignored in many applications, for multiple microphone
systems that are sensitive to inter-microphone phase, correct simulation of arrival time
relationships is critical. One way to reduce this problem is to compute the discrete impulse
response at a much higher sampling frequency, decimate the impulse response to the original
sampling frequency, and convolve the source signal with it. Peterson suggested another
modification to the image method [10]. In this approach, each impulse in (21) is replaced
by the impulse response of a Hanning-windowed ideal low-pass filter of the form

δLPF(t) =

{
1
2

(
1 + cos

(
2πt
Tw

))
sinc (2πfct) for − Tw

2 < t < Tw

2

0 otherwise
, (24)

where Tw is the width (in time) of the impulse response and fc is the cut-off frequency of the
low-pass filter. For the simulations performed in this report Tw was set to 4 ms and fc was
set to the Nyquist frequency. Each impulse δ(t− τ) in (21) is first replaced by δLPF(t− τ)
and subsequently sampled. By doing this, true delays of arrival of the reflected signals are
simulated accurately even at the original low sampling frequency. A comparison of both
methods is depicted in Figure 5, where the delay was set to 4.8 samples. Squares indicate
sample values produced by Allen and Berkley’s shifted impulse method and circles indicate
values produced by Peterson’s low-pass impulse method. The solid line shows the central
portion of the continuous-time low-pass impulse function.

The other consideration while simulating reverberation for a room is the duration of
reverberation or the reverberation time. Formally, the reverberation time is defined as the
time required for the intensities of reflected sound rays to be down 60 dB from the direct
path sound ray. An empirical formula, known as Sabin-Franklin’s formula [11] can be used
to relate the reverberation time RT60 by,

RT60 =
24 ln(10) V

c
∑6
i=1 Si(1− β2

i )
, (25)

where V denotes the volume of the room, and βi and Si denote the reflection coefficient and
the surface of the ith wall, respectively.
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5.3 Relation with the Helmholtz Equation

The image model described in Section 5.1 yields an intuitive explanation of the image-
method. In this section we will proof the relation between the solution of the Helmholtz
equation (7) for a classical rectangular room and (21). The solution of the Helmholtz
equation for a rectangular room was given in (13).

Let us take all images into account by defining −∞ < mv < ∞ for v ∈ {x, y, z}. By
expanding the cosines of the eigenfunctions using exponentials, and by using the fact that
Λm = V ∀m, we can write (13) as

H(r, rs;ω) =
1

8V

∑
p∈P

∑
m∈M

exp(ikm ·Rp)

k2 − ‖km‖2
, (26)

where

km =

[
mxπ

Lx
,
myπ

Ly
,
mzπ

Lz

]
= [kx, ky, kz], (27)

and Rp represents the eight vectors given by (16).
Now we proceed along the same lines as Allen and Berkley in [1]. Using the property of

the delta function on kx, ky, and kz, i.e.∫ ∞
−∞

δ(k − a)f(k) = f(a), (28)

we may rewrite (26) in integral form

H(r, rs;ω) =
1

8V

∑
p∈P

∫∫∫ ∞
−∞

exp(ik′ ·Rp)

k2 − ‖k′‖2
∑

m∈M
δ(k′ − km) dk′, (29)

where k′ = [k′x, k
′
y, k
′
z]. By Fourier series analysis one may show

∞∑
mv=−∞

δ

(
k′v −

mvπ

Lv

)
=
Lv
π

∞∑
mv=−∞

exp(i2Lvmvk
′
v) for v ∈ {x, y, z}. (30)

Therefore, we can rewrite (29) as

H(r, rs;ω) =
1

(2π)3

∑
p∈P

∫∫∫ ∞
−∞

∑
m∈M

exp(ik′ · (Rp + Rm))

k2 − ‖k′‖2 dk′, (31)

where Rm is the vector define in (17). The integral in (31) is just a plane wave expansion
for a point source in free space since

exp(ik‖R‖)
4π‖R‖ =

1

(2π)3

∫∫∫ ∞
−∞

exp(ik′ ·R)

k2 − ‖k′‖2 dk′. (32)

Finally, using (31) and (32) we obtain

H(r, rs;ω) =
∑
p∈P

∑
m∈M

exp(ik‖Rp + Rm‖)
4π‖Rp + Rm‖

. (33)

Taking the inverse Fourier transform2 of (33) the RIR is obtained

h(r, rs, t) =
∑
p∈P

∑
m∈M

δ(t− ‖Rp + Rm‖/c)
4π‖Rp + Rm‖

(34)

=
∑
p∈P

∑
m∈M

δ(t− τ)

4πd
. (35)

2Note that the inverse Fourier transform is defined as p(t) =
∫∞
−∞ P (ω) exp(−iωt) dω.
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By taking into account the reflection coefficients of the six walls we obtain

h(r, rs, t) =
∑
p∈P

∑
m∈M

β|mx−q|
x1

β|mx|
x2

β|my−j|
y1 β|my|

y2 β|mz−k|
z1 β|mz|

z2

δ(t− τ)

4πd
, (36)

which is equivalent to (21).

6 Implementation

The image method as discussed in the previous section has been implemented as a MAT-
LAB mex-function and was written in C++. The resulting Dynamic-Link-Library (DLL)
can easily be used within MATLAB as a standard MATLAB function. The C++ imple-
mentation is much faster than the equivalent MATLAB implementation. The source-code
can be found in Appendix A.

The function rir generator is defined as follows:

function [h, beta_hat] = rir_generator(c, fs, r, s, L, beta, nsample,

mtype, order, dim, orientation,

hp_filter);

Input parameters:
Parameter Description
c sound velocity in m/s.
fs sampling frequency in Hz.
r M x 3 matrix specifying the (x,y,z) coordinates of the receiver(s) in m.
s 1 x 3 vector specifying the (x,y,z) coordinates of the source in m.
L 1 x 3 vector specifying the room dimensions (x,y,z) in m.
beta 1 x 6 vector specifying the reflection coefficients [βx1 βx2 βy1 βy2 βz1 βz2 ]

or beta = Reverberation Time (RT60) in seconds.

Optional input parameters:
Parameter Description Default value
nsample number of samples to calculate. RT60fs
mtype type of microphone that is used [‘omnidirectional’, ‘sub-

cardioid’, ‘cardioid’, ‘hypercardioid’, ‘bidirectional’].
‘omnidirectional’

order maximum reflection order. -1
dim room dimension (2 or 3). 3
orientation direction in which the microphone is pointed, specified

using azimuth and elevation angles in radians.
[0 0]

hp filter use ‘false’ to disable high-pass filter. ‘true’

Output parameters:
Parameter Description
h M x nsample matrix containing the calculated room impulse

response(s).
beta hat In case a reverberation time is specified as an input parameter the

corresponding reflection coefficient is returned.

Multi-Channel Support In case more than one receiver position is specified the function
rir generator will calculate all RIRs at once.

Reverberation Time versus Reflection Coefficients The reflection coefficients in (21)
can be specified using the parameter ’beta’. In case ’beta’ consists of one element the
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program assumes a reverberation time (in seconds) is specified. The corresponding
average reflection coefficient is calculated using (25) and will be returned using the
output parameter ‘beta hat ’.

Reflection Order and Room Dimension In order to control the complexity of the gen-
erated RIR one can control the maximum reflection order using the parameter ‘order ’.
In case the order is chosen ‘-1’ (default value) the maximum amount of reflections,
given the desired length of the RIR, is calculated. The dimension of the room can be
set using the parameter ‘dim’. This value can either be 2 or 3 (default value).

Microphone Directivity The microphone’s directionality, or polar pattern, can also be
taken into account. Different kinds of polar patterns are implemented and can be
chosen using the parameter ‘mtype’. The signal attenuation A(θ), where θ denotes the
direction of arrival, is calculated using the following standard formula:

A(θ) = α+ (1− α) cos (θ) . (37)

The polar pattern is controlled by α, see Table 1. The resulting polar patterns for the
Omnidirectional, Cardioid, Hypercardioid and Bidirectional microphone are depicted
in Figure 6.

Directivity Pattern α
Omnidirectional (Monopole) 1
Subcardioid 0.75
Cardioid 0.5
Hypercardioid 0.25
Bidirectional (Dipole) 0

Table 1: Supported polar patterns and corresponding values for α.

The angle in which the microphone is pointing can be adjusted with the parameter
‘orientation’. By default the microphone points towards the positive x-axis. The
microphone’s directionality takes the azimuth and elevation of the received reflections
into account.
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Figure 6: Polar plots of four different microphone polar patterns.

7 Examples

In this section some basic and more complex examples are presented in the form of a
MATLABr script.

c = 340; % Sound v e l o c i t y (m/ s )
f s = 16000; % Samp l e f r e q u e n c y ( s am p l e s / s )
r = [2 1 .5 2 ] ; % R e c e i v e r p o s i t i o n [ x y z ] (m)
s = [2 3 .5 2 ] ; % So u r c e p o s i t i o n [ x y z ] (m)
L = [5 4 6 ] ; % Room d im e n s i o n s [ x y z ] (m)
beta = 0 . 4 ; % R e v e r b e r a t i o n t im e ( s )
n = 4096; % Number o f s am p l e s

h = r i r g e n e r a t o r ( c , f s , r , s , L , beta , n ) ;

Example 1: Simple example to generate one RIR.

n [samples]

500 1000 1500 2000 2500 3000 3500 4000
-0.01

0

0.01

0.02

0.03

0.04

Figure 7: Output of Example A.1.
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c = 340; % Sound v e l o c i t y (m/ s )
f s = 16000; % Samp l e f r e q u e n c y ( s am p l e s / s )
r = [2 1 .5 2 ] ; % R e c e i v e r p o s i t i o n [ x y z ] (m)
s = [2 3 .5 2 ] ; % So u r c e p o s i t i o n [ x y z ] (m)
L = [5 4 6 ] ; % Room d im e n s i o n s [ x y z ] (m)
beta = 0 . 4 ; % R e v e r b e r a t i o n t im e ( s )
n = 1024; % Number o f s am p l e s
mtype = ‘ omnid i r ec t iona l ’ ; % Type o f m i c r o p h o n e
order = 2 ; % R e f l e c t i o n o r d e r
dim = 3 ; % Room d im e n s i o n
o r i e n t a t i on =[0 0 ] ; % Mi c r o p h o n e o r i e n t a t i o n ( r a d )
h p f i l t e r =1; % En a b l e h i g h−p a s s f i l t e r

h = r i r g e n e r a t o r ( c , f s , r , s , L , beta , n , mtype , order , dim , o r i en ta t i on , h p f i l t e r ) ;

Example 2: Generate one RIR.

n [samples]

100 200 300 400 500 600 700 800 900 1000
-0.01

0

0.01

0.02

0.03

0.04

Figure 8: Output of Example A.2.

c = 340; % Sound v e l o c i t y (m/ s )
f s = 16000; % Samp l e f r e q u e n c y ( s am p l e s / s )
r = [2 1 .5 2 ; 1 1 .5 2 ] ; % R e c e i v e r p o s i t i o n s [ x 1 y 1 z 1 ; x 2 y 2 z 2 ] (m)
s = [2 3 .5 2 ] ; % So u r c e p o s i t i o n [ x y z ] (m)
L = [5 4 6 ] ; % Room d im e n s i o n s [ x y z ] (m)
beta = 0 . 4 ; % R e v e r b e r a t i o n t im e ( s )
n = 4096; % Number o f s am p l e s
mtype = ‘ omnid i r ec t iona l ’ ; % Type o f m i c r o p h o n e
order = −1; % −1 e q u a l s maximum r e f l e c t i o n o r d e r !
dim = 3 ; % Room d im e n s i o n
o r i e n t a t i on =[0 0 ] ; % Mi c r o p h o n e o r i e n t a t i o n ( r a d )
h p f i l t e r = 1 ; % En a b l e h i g h−p a s s f i l t e r

h = r i r g e n e r a t o r ( c , f s , r , s , L , beta , n , mtype , order , dim , o r i en ta t i on , h p f i l t e r ) ;

Example 3: Generate multiple RIRs.

c = 340; % Sound v e l o c i t y (m/ s )
f s = 16000; % Samp l e f r e q u e n c y ( s am p l e s / s )
r = [2 1 .5 2 ] ; % R e c e i v e r p o s i t i o n [ x y z ] (m)
s = [2 3 .5 2 ] ; % So u r c e p o s i t i o n [ x y z ] (m)
L = [5 4 6 ] ; % Room d im e n s i o n s [ x y z ] (m)
n = 4096; % Number o f s am p l e s
beta = 0 . 4 ; % R e v e r b e r a t i o n t im e ( s )
mtype = ‘ hypercard io id ’ ; % Type o f m i c r o p h o n e
order = −1; % −1 e q u a l s maximum r e f l e c t i o n o r d e r !
dim = 3 ; % Room d im e n s i o n
o r i e n t a t i on =[pi /2 0 ] ; % Mi c r o p h o n e o r i e n t a t i o n ( r a d )
h p f i l t e r = 1 ; % En a b l e h i g h−p a s s f i l t e r

h = r i r g e n e r a t o r ( c , f s , r , s , L , beta , n , mtype , order , dim , o r i en ta t i on , h p f i l t e r ) ;

Example 4: Generate one RIR using a hypercardioid microphone.
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n [samples]

500 1000 1500 2000 2500 3000 3500 4000
-0.01

0

0.01

0.02

0.03

0.04

Figure 9: Output of Example A.4.

A reverberant signal can now be created by filtering the anechoic signal with the gener-
ated RIR as shown in Example 5.

r e v e r b e r an t s i g na l = f f t f i l t (h , c l e a n s i g n a l ) ;

Example 5: Generate reverberant signal.

8 Summary

In this report we presented a short overview of different methods for simulating room acous-
tics. We discussed the well-known image method, proposed by Allen and Berkley [1], in
more detail. An efficient implementation of the image method was developed in the form
of a MATLAB mex-function written in C++. Some example scripts were presented to
demonstrate the use of this function. Our implementation incorporates some novel features
which allows the user to control the complexity of the RIR and the directivity pattern of
the receiver.
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11 Copyrights

Copyright 2003-2010 E.A.P. Habets, The Netherlands.

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA

A Source Code

/∗
Program : Room Im p u l s e R e s p o n s e G e n e r a t o r

D e s c r i p t i o n : Compu t e s t h e r e s p o n s e o f an a c o u s t i c s o u r c e t o one o r more
m i c r o p h o n e s i n a r e v e r b e r a n t room u s i n g t h e imag e me t hod [ 1 , 2 ] .

[ 1 ] J . B . A l l e n and D .A . B e r k l e y ,
Image me t hod f o r e f f i c i e n t l y s i m u l a t i n g sm a l l−room a c o u s t i c s ,
J o u r n a l A c o u s t i c S o c i e t y o f Amer ica , 6 5 ( 4 ) , A p r i l 1 9 7 9 , p 9 4 3 .

[ 2 ] P .M. P e t e r s o n ,
S i m u l a t i n g t h e r e s p o n s e o f m u l t i p l e m i c r o p h o n e s t o a s i n g l e
a c o u s t i c s o u r c e i n a r e v e r b e r a n t room , J o u r n a l A c o u s t i c
S o c i e t y o f Amer ica , 8 0 ( 5 ) , November 1 9 8 6 .

Au t h o r : d r . i r . E .A . P . H a b e t s ( e h a b e t s @ d e r e v e r b e r a t i o n . o r g )

V e r s i o n : 2 . 0 . 2 0 1 0 0 9 2 0

H i s t o r y : 1 . 0 . 2 0 0 3 0 6 0 6 I n i t i a l v e r s i o n
1 . 1 . 2 0 0 4 0 8 0 3 + M i c r o p h o n e d i r e c t i v i t y

+ Imp r o v e d p h a s e a c c u r a c y [ 2 ]
1 . 2 . 2 0 0 4 0 3 1 2 + R e f l e c t i o n o r d e r
1 . 3 . 2 0 0 5 0 9 3 0 + R e v e r b e r a t i o n Time
1 . 4 . 2 0 0 5 1 1 1 4 + S u p p o r t s m u l t i−c h a n n e l s
1 . 5 . 2 0 0 5 1 1 1 6 + High−p a s s f i l t e r [ 1 ]

+ M i c r o p h o n e d i r e c t i v i t y c o n t r o l
1 . 6 . 2 0 0 6 0 3 2 7 + Minor im p r o v em e n t s
1 . 7 . 2 0 0 6 0 5 3 1 + Minor im p r o v em e n t s
1 . 8 . 2 0 0 8 0 7 1 3 + Minor im p r o v em e n t s
1 . 9 . 2 0 0 9 0 8 2 2 + 3D m i c r o p h o n e d i r e c t i v i t y c o n t r o l
2 . 0 . 2 0 1 0 0 9 2 0 + C a l c u l a t i o n o f t h e s o u r c e−ima g e p o s i t i o n

c h a n g e d i n t h e c o d e and t u t o r i a l .
T h i s e n s u r e s a p r o p e r r e s p o n s e t o r e f l e c t i o n s
i n c a s e a d i r e c t i o n a l m i c r o p h o n e i s u s e d .

C o p y r i g h t (C) 2003−2010 E .A . P . Ha b e t s , The N e t h e r l a n d s .

T h i s p r o g r am i s f r e e s o f t w a r e ; you can r e d i s t r i b u t e i t and / o r mo d i f y
i t u n d e r t h e t e rm s o f t h e GNU Ge n e r a l P u b l i c L i c e n s e a s p u b l i s h e d b y
t h e F r e e S o f t w a r e F o u n d a t i o n ; e i t h e r v e r s i o n 2 o f t h e L i c e n s e , o r
( a t y o u r o p t i o n ) any l a t e r v e r s i o n .

T h i s p r o g r am i s d i s t r i b u t e d i n t h e h o p e t h a t i t w i l l b e u s e f u l ,
b u t WITHOUT ANY WARRANTY; w i t h o u t e v e n t h e i m p l i e d w a r r a n t y o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . S e e t h e
GNU Ge n e r a l P u b l i c L i c e n s e f o r more d e t a i l s .

You s h o u l d h a v e r e c e i v e d a c o p y o f t h e GNU Ge n e r a l P u b l i c L i c e n s e
a l o n g w i t h t h i s p r o g r am ; i f no t , w r i t e t o t h e F r e e S o f t w a r e
F oun d a t i o n , I n c . , 51 F r a n k l i n St , F i f t h F l o o r , Bo s t on , MA 02110−1301 USA
∗/

#define USE MATH DEFINES

#include ”matrix . h”
#include ”mex . h”
#include ”math . h”

#define ROUND(x) ( ( x)>=0?( long ) ( ( x )+0 . 5 ) : ( long ) ( ( x )−0.5))

#ifndef M PI
#de f i n e M PI 3.14159265358979323846

#endif

double s i n c (double x)
{
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i f (x == 0)
return ( 1 . ) ;

else
return ( s i n (x )/x ) ;

}

double sim microphone (double x , double y , double z , double∗ angle , char mtype )
{

i f (mtype==’b ’ | | mtype==’ c ’ | | mtype==’ s ’ | | mtype==’h ’ )
{

double strength , vartheta , varphi , alpha ;

// P o l a r P a t t e r n a l p h a
// −−−−−−−−−−−−−−−−−−−−−−−−−−−
// B i d i r e c t i o n a l 0
// H y p e r c a r d i o i d 0 . 2 5
// C a r d i o i d 0 . 5
// S u b c a r d i o i d 0 . 7 5
// Om n i d i r e c t i o n a l 1

switch (mtype )
{
case ’b ’ :

alpha = 0 ;
break ;

case ’h ’ :
alpha = 0 . 2 5 ;
break ;

case ’ c ’ :
alpha = 0 . 5 ;
break ;

case ’ s ’ :
alpha = 0 . 7 5 ;
break ;

} ;

vartheta = acos ( z/ sq r t (pow(x ,2)+pow(y ,2)+pow( z , 2 ) ) ) ;
varphi = atan2 (y , x ) ;

s t r ength = s in (M PI/2−angle [ 1 ] ) ∗ s i n ( vartheta ) ∗ cos ( angle [0]− varphi )
+ cos (M PI/2−angle [ 1 ] ) ∗ cos ( vartheta ) ;

s t r ength = alpha + (1−alpha ) ∗ s t r ength ;

return s t r ength ;
}
else
{

return 1 ;
}

}

void mexFunction ( int nlhs , mxArray ∗plhs [ ] , int nrhs , const mxArray ∗prhs [ ] )
{

i f ( nrhs == 0)
{

mexPrintf ( ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n”
” | Room Impulse Response Generator |\n”
” | |\n”
” | Computes the response o f an acou s t i c source to one or more |\n”

” | microphones in a reverberant room using the image method [ 1 , 2 ] . |\n”
” | |\n”
” | Author : dr . i r . Emanuel Habets ( ehabets@dereverberat ion . org ) |\n”
” | |\n”
” | Version : 2 .0 .20100920 |\n”
” | |\n”
” | Copyright (C) 2003−2010 E.A.P. Habets , The Nether lands . |\n”
” | |\n”
” | [ 1 ] J .B. Al len and D.A. Berkley , |\n”
” | Image method f o r e f f i c i e n t l y s imulat ing small−room acous t i c s , | \ n”
” | Journal Acoust ic Soc i e ty o f America , |\n”
” | 65(4) , Apr i l 1979 , p 943 . |\n”
” | |\n”
” | [ 2 ] P .M. Peterson , |\n”
” | Simulat ing the response o f mul t ip l e microphones to a s i n g l e |\n”
” | acou s t i c source in a reverberant room , Journal Acoust ic |\n”
” | Soc i e ty o f America , 80(5) , November 1986. |\n”
”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n\n”
” funct i on [ h , beta hat ] = r i r g e n e r a t o r ( c , f s , r , s , L , beta , nsample ,\n”
” mtype , order , dim , o r i en ta t i on , h p f i l t e r ) ;\ n\n”
” Input parameters :\n”
” c : sound v e l o c i t y in m/ s .\n”
” f s : sampling frequency in Hz .\n”
” r : M x 3 array s p e c i f y i n g the (x , y , z ) coo rd ina t e s o f the\n”
” r e c e i v e r ( s ) in m.\n”
” s : 1 x 3 vector s p e c i f y i n g the (x , y , z ) coo rd ina t e s o f the\n”
” source in m.\n”
” L : 1 x 3 vector s p e c i f y i n g the room dimensions (x , y , z ) in m.\n”
” beta : 1 x 6 vector s p e c i f y i n g the r e f l e c t i o n c o e f f i c i e n t s \n”
” [ beta x1 beta x2 beta y1 beta y2 beta z1 beta z2 ] or\n”
” beta = Reverberat ion Time (T 60 ) in seconds .\n”
” nsample : number o f samples to ca l cu l a t e , d e f au l t i s T 60∗ f s .\n”
” mtype : [ omnid i r ec t iona l , subcard io id , card io id , hypercard io id ,\n”
” b i d i r e c t i o n a l ] , d e f au l t i s omn id i r e c t i ona l .\n”
” order : r e f l e c t i o n order , d e f au l t i s −1, i . e . maximum order .\n”
” dim : room dimension (2 or 3) , d e f au l t i s 3 .\n”
” o r i e n t a t i on : d i r e c t i o n in which the microphones are pointed , s p e c i f i e d us ing\n”
” azimuth and e l e va t i on ang l e s ( in rad ians ) , d e f au l t i s [ 0 0 ] .\ n”
” h p f i l t e r : use ’ f a l s e ’ to d i s ab l e high−pass f i l t e r , the high−pass f i l t e r \n”
” i s enabled by de f au l t .\n\n”
”Output parameters :\n”
” h : M x nsample matrix conta in ing the ca l cu l a t ed room impulse\n”
” response ( s ) .\ n”
” beta hat : In case a r eve rbe ra t i on time i s s p e c i f i e d as an input parameter\n”
” the corresponding r e f l e c t i o n c o e f f i c i e n t i s returned .\n\n” ) ;

return ;
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}
else
{

mexPrintf ( ”Room Impulse Response Generator ( Vers ion 2 .0 .20100920) by Emanuel Habets\n”
”Copyright (C) 2003−2010 E.A.P. Habets , The Nether lands .\n” ) ;

}

// Chec k f o r p r o p e r number o f a r g um e n t s
i f ( nrhs < 6)

mexErrMsgTxt ( ”Error : There are at l e a s t s i x input parameters r equ i r ed . ” ) ;
i f ( nrhs > 12)

mexErrMsgTxt ( ”Error : Too many input arguments . ” ) ;
i f ( n lhs > 2)

mexErrMsgTxt ( ”Error : Too many output arguments . ” ) ;

// Chec k f o r p r o p e r a r g um e n t s
i f ( ! (mxGetN( prhs [0])==1) | | ! mxIsDouble ( prhs [ 0 ] ) | | mxIsComplex ( prhs [ 0 ] ) )

mexErrMsgTxt ( ” Inva l i d input arguments ! ” ) ;
i f ( ! (mxGetN( prhs [1])==1) | | ! mxIsDouble ( prhs [ 1 ] ) | | mxIsComplex ( prhs [ 1 ] ) )

mexErrMsgTxt ( ” Inva l i d input arguments ! ” ) ;
i f ( ! (mxGetN( prhs [2])==3) | | ! mxIsDouble ( prhs [ 2 ] ) | | mxIsComplex ( prhs [ 2 ] ) )

mexErrMsgTxt ( ” Inva l i d input arguments ! ” ) ;
i f ( ! (mxGetN( prhs [3])==3) | | ! mxIsDouble ( prhs [ 3 ] ) | | mxIsComplex ( prhs [ 3 ] ) )

mexErrMsgTxt ( ” Inva l i d input arguments ! ” ) ;
i f ( ! (mxGetN( prhs [4])==3) | | ! mxIsDouble ( prhs [ 4 ] ) | | mxIsComplex ( prhs [ 4 ] ) )

mexErrMsgTxt ( ” Inva l i d input arguments ! ” ) ;
i f ( ! (mxGetN( prhs [5])==6 | | mxGetN( prhs [5])==1) | | ! mxIsDouble ( prhs [ 5 ] ) | | mxIsComplex ( prhs [ 5 ] ) )

mexErrMsgTxt ( ” Inva l i d input arguments ! ” ) ;

// Load p a r am e t e r s
double c = mxGetScalar ( prhs [ 0 ] ) ;
double f s = mxGetScalar ( prhs [ 1 ] ) ;
const double∗ r r = mxGetPr( prhs [ 2 ] ) ;
int nr o f m i c s = ( int ) mxGetM( prhs [ 2 ] ) ;
const double∗ s s = mxGetPr( prhs [ 3 ] ) ;
const double∗ LL = mxGetPr( prhs [ 4 ] ) ;
const double∗ beta pt r = mxGetPr( prhs [ 5 ] ) ;
double∗ beta = new double [ 6 ] ;
int nsamples ;
char∗ mtype ;
int order ;
int dim ;
double angle [ 2 ] ;
int h p f i l t e r ;
double TR;

plhs [ 1 ] = mxCreateDoubleMatrix (1 , 1 , mxREAL) ;
double∗ beta hat = mxGetPr( p lhs [ 1 ] ) ;
beta hat [ 0 ] = 0 ;

// R e f l e c t i o n c o e f f i c i e n t s o r R e v e r b e r a t i o n Time ?
i f (mxGetN( prhs [5])==1)
{

double V = LL [ 0 ]∗LL [ 1 ]∗LL [ 2 ] ;
double S = 2∗(LL [ 0 ]∗LL[2]+LL [ 1 ]∗LL[2]+LL [ 0 ]∗LL [ 1 ] ) ;
TR = beta pt r [ 0 ] ;
double a l f a = 24∗V∗ l og ( 1 0 . 0 ) / ( c∗S∗TR) ;
i f ( a l f a > 1)

mexErrMsgTxt ( ”Error : The r e f l e c t i o n c o e f f i c i e n t s cannot be ca l cu l a t ed us ing the current ”
”room parameters , i . e . room s i z e and r eve rbe ra t i on time .\n Please ”
” s p e c i f y the r e f l e c t i o n c o e f f i c i e n t s or change the room parameters . ” ) ;

beta hat [ 0 ] = sqr t (1− a l f a ) ;
for ( int i =0; i <6; i++)

beta [ i ] = beta hat [ 0 ] ;
}
else
{

for ( int i =0; i <6; i++)
beta [ i ] = beta pt r [ i ] ;

}

// High−p a s s f i l t e r ( o p t i o n a l )
i f ( nrhs > 11 && mxIsEmpty( prhs [ 1 1 ] ) == f a l s e )
{

h p f i l t e r = ( int ) mxGetScalar ( prhs [ 1 1 ] ) ;
}
else
{

h p f i l t e r = 1 ;
}

// 3D M i c r o p h o n e o r i e n t a t i o n ( o p t i o n a l )
i f ( nrhs > 10 && mxIsEmpty( prhs [ 1 0 ] ) == f a l s e )
{

const double∗ o r i e n t a t i on = mxGetPr( prhs [ 1 0 ] ) ;
i f (mxGetN( prhs [ 1 0 ] ) == 1)
{

angle [ 0 ] = o r i e n t a t i on [ 0 ] ;
angle [ 1 ] = 0 ;

}
else
{

angle [ 0 ] = o r i e n t a t i on [ 0 ] ;
angle [ 1 ] = o r i e n t a t i on [ 1 ] ;

}
}
else
{

angle [ 0 ] = 0 ;
angle [ 1 ] = 0 ;

}

// Room D imen s i o n ( o p t i o n a l )
i f ( nrhs > 9 && mxIsEmpty ( prhs [ 9 ] ) == f a l s e )
{
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dim = ( int ) mxGetScalar ( prhs [ 9 ] ) ;
i f (dim != 2 && dim != 3)

mexErrMsgTxt ( ” Inva l i d input arguments ! ” ) ;

i f (dim == 2)
{

beta [ 4 ] = 0 ;
beta [ 5 ] = 0 ;

}
}
else
{

dim = 3 ;
}

// R e f l e c t i o n o r d e r ( o p t i o n a l )
i f ( nrhs > 8 && mxIsEmpty ( prhs [ 8 ] ) == f a l s e )
{

order = ( int ) mxGetScalar ( prhs [ 8 ] ) ;
i f ( order < −1)

mexErrMsgTxt ( ” Inva l i d input arguments ! ” ) ;
}
else
{

order = −1;
}

// Type o f m i c r o p h o n e ( o p t i o n a l )
i f ( nrhs > 7 && mxIsEmpty ( prhs [ 7 ] ) == f a l s e )
{

mtype = new char [mxGetN( prhs [ 7 ] )+ 1 ] ;
mxGetString ( prhs [ 7 ] , mtype , mxGetN( prhs [ 7 ] )+1 ) ;

}
else
{

mtype = new char [ 1 ] ;
mtype [ 0 ] = ’ o ’ ;

}

// Number o f s am p l e s ( o p t i o n a l )
i f ( nrhs > 6 && mxIsEmpty ( prhs [ 6 ] ) == f a l s e )
{

nsamples = ( int ) mxGetScalar ( prhs [ 6 ] ) ;
}
else
{

i f (mxGetN( prhs [5 ]) >1)
{

double V = LL [ 0 ]∗LL [ 1 ]∗LL [ 2 ] ;
double S = 2∗(LL [ 0 ]∗LL[2]+LL [ 1 ]∗LL[2]+LL [ 0 ]∗LL [ 1 ] ) ;
double alpha = ((1−pow( beta [0] ,2))+(1−pow( beta [ 1 ] , 2 ) ) )∗LL [ 0 ]∗LL [ 2 ] +

((1−pow( beta [2] ,2))+(1−pow( beta [ 3 ] , 2 ) ) )∗LL [ 1 ]∗LL [ 2 ] +
((1−pow( beta [4] ,2))+(1−pow( beta [ 5 ] , 2 ) ) )∗LL [ 0 ]∗LL [ 1 ] ;

TR = 24∗ l og (10 .0 )∗V/( c∗alpha ) ;
i f (TR < 0 .128)

TR = 0 . 128 ;
}
nsamples = ( int ) (TR ∗ f s ) ;

}

// C r e a t e o u t p u t v e c t o r
plhs [ 0 ] = mxCreateDoubleMatrix ( nr o f mic s , nsamples , mxREAL) ;
double∗ imp = mxGetPr( p lhs [ 0 ] ) ;

// Temporary v a r i a b l e s and c o n s t a n t s ( h i g h−p a s s f i l t e r )
const double W = 2∗M PI∗100/ f s ;
const double R1 = exp(−W) ;
const double B1 = 2∗R1∗ cos (W) ;
const double B2 = −R1 ∗ R1 ;
const double A1 = −(1+R1 ) ;
double X0 ;
double∗ Y = new double [ 3 ] ;

// Temporary v a r i a b l e s and c o n s t a n t s ( image−method )
const double Fc = 1 ;
const int Tw = 2 ∗ ROUND(0.004∗ f s ) ;
const double cTs = c/ f s ;
double∗ hanning window = new double [Tw+1] ;
double∗ LPI = new double [Tw+1] ;
double∗ r = new double [ 3 ] ;
double∗ s = new double [ 3 ] ;
double∗ L = new double [ 3 ] ;
double hu [ 6 ] ;
double r e f l [ 3 ] ;
double d i s t ;
double l l ;
double s t r ength ;
int pos , f d i s t ;
int n1 , n2 , n3 ;
int q , j , k ;
int mx, my, mz ;
int n ;

s [ 0 ] = ss [ 0 ] / cTs ; s [ 1 ] = ss [ 1 ] / cTs ; s [ 2 ] = ss [ 2 ] / cTs ;
L [ 0 ] = LL [ 0 ] / cTs ; L [ 1 ] = LL [ 1 ] / cTs ; L [ 2 ] = LL [ 2 ] / cTs ;

// Hann ing w indow
for (n = 0 ; n < Tw+1 ; n++)
{

hanning window [ n ] = 0 .5 ∗ (1 + cos (2∗M PI∗(n+Tw/2)/Tw) ) ;
}

for ( int mic nr = 0 ; mic nr < nr o f m i c s ; mic nr++)
{

// [ x 1 x 2 . . . x N y 1 y 2 . . . y N z 1 z 2 . . . z N ]
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r [ 0 ] = r r [ mic nr + 0∗ nr o f m i c s ] / cTs ;
r [ 1 ] = r r [ mic nr + 1∗ nr o f m i c s ] / cTs ;
r [ 2 ] = r r [ mic nr + 2∗ nr o f m i c s ] / cTs ;

n1 = ( int ) c e i l ( nsamples /(2∗L [ 0 ] ) ) ;
n2 = ( int ) c e i l ( nsamples /(2∗L [ 1 ] ) ) ;
n3 = ( int ) c e i l ( nsamples /(2∗L [ 2 ] ) ) ;

// G e n e r a t e room im p u l s e r e s p o n s e
for (mx = −n1 ; mx <= n1 ; mx++)
{

hu [ 0 ] = 2∗mx∗L [ 0 ] ;

for (my = −n2 ; my <= n2 ; my++)
{

hu [ 1 ] = 2∗my∗L [ 1 ] ;

for (mz = −n3 ; mz <= n3 ; mz++)
{

hu [ 2 ] = 2∗mz∗L [ 2 ] ;

for (q = 0 ; q <= 1 ; q++)
{

hu [ 3 ] = (1−2∗q)∗ s [ 0 ] − r [ 0 ] + hu [ 0 ] ;
r e f l [ 0 ] = pow( beta [ 0 ] , abs (mx−q ) ) ∗ pow( beta [ 1 ] , abs (mx) ) ;

for ( j = 0 ; j <= 1 ; j++)
{

hu [ 4 ] = (1−2∗ j )∗ s [ 1 ] − r [ 1 ] + hu [ 1 ] ;
r e f l [ 1 ] = pow( beta [ 2 ] , abs (my−j ) ) ∗ pow( beta [ 3 ] , abs (my) ) ;

for (k = 0 ; k <= 1 ; k++)
{

hu [ 5 ] = (1−2∗k)∗ s [ 2 ] − r [ 2 ] + hu [ 2 ] ;
r e f l [ 2 ] = pow( beta [ 4 ] , abs (mz−k ) ) ∗ pow( beta [ 5 ] , abs (mz ) ) ;

d i s t = sqr t (pow(hu [ 3 ] , 2) + pow(hu [ 4 ] , 2) + pow(hu [ 5 ] , 2 ) ) ;

i f ( abs (2∗mx−q)+abs (2∗my−j )+abs (2∗mz−k) <= order | | order == −1)
{

f d i s t = ( int ) f l o o r ( d i s t ) ;
i f ( f d i s t < nsamples )
{

s t r ength = sim microphone (hu [ 3 ] , hu [ 4 ] , hu [ 5 ] , angle , mtype [ 0 ] )
∗ r e f l [ 0 ]∗ r e f l [ 1 ]∗ r e f l [ 2 ] / ( 4∗M PI∗ d i s t ∗cTs ) ;

for (n = 0 ; n < Tw+1 ; n++)
LPI [ n ] = hanning window [ n ] ∗ Fc ∗ s i n c (M PI∗Fc∗(n−(d i s t−f d i s t )−(Tw/2 ) ) ) ;

pos = fd i s t −(Tw/2 ) ;
for (n = 0 ; n < Tw+1; n++)

i f ( pos+n >= 0 && pos+n < nsamples )
imp [ mic nr + nr o f m i c s ∗( pos+n ) ] += strength ∗ LPI [ n ] ;

}
}

}
}

}
}

}
}

// ’ O r i g i n a l ’ h i g h−p a s s f i l t e r a s p r o p o s e d b y A l l e n and B e r k l e y .
i f ( h p f i l t e r == 1)
{

for ( int idx = 0 ; idx < 3 ; idx++) {Y[ idx ] = 0;}
for ( int idx = 0 ; idx < nsamples ; idx++)
{

X0 = imp [ mic nr+nr o f m i c s ∗ idx ] ;
Y[ 2 ] = Y [ 1 ] ;
Y[ 1 ] = Y [ 0 ] ;
Y[ 0 ] = B1∗Y[ 1 ] + B2∗Y[ 2 ] + X0 ;
imp [ mic nr+nr o f m i c s ∗ idx ] = Y[ 0 ] + A1∗Y[ 1 ] + R1∗Y[ 2 ] ;

}
}

}
}
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