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Introduction
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3Motivation

I Parametric speech processing is processing based on
parametric models.

I Signal models described in terms of physically meaningful
parameters.

I Parametric speech models have been around for many years
(e.g., linear prediction in the 70s, sinusoidal model in the 80s).

I Skeptics argue that the models are (always) wrong and that it is
not possible to estimate the model parameters well enough
under adverse conditions.

I Parametric models can, however, be used for many things and in
different ways.

I As an example, we will here take our starting point in the
harmonic model.
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4Motivation

All models are wrong; some models are useful. (G. Box)



Mads Græsbøll Christensen | Statistical Parametric Speech Processing

5Motivation

Methodology:

I Methods rooted in estimation theory.
I Based on parametric models of the signal of interest.
I Analysis of estimation and modeling problems as mathematical

problems.

Why parametric methods?

I They lead to robust, tractable methods whose properties can be
analyzed and understood.

I A full parametrization of the signal of interest is obtained.
I Back to basics... how can we hope to solve complicated

problems if we cannot solve the simple ones?
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6Motivation

Some interesting questions:

I Under which conditions can a method be expected to work?
I How does performance depend on the acoustic environment?
I Is the method optimal (and what does optimal mean)?
I How do we improve the method?

Only possible to answer if assumptions are made explicit! Often the
assumptions are sufficient conditions but not necessary.

Non-parametric methods are hard to analyze and understand.
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7Harmonic Model

The harmonic model is given by (for n = 0, . . . ,N − 1)

x(n) =s(n) + e(n) =
L∑

l=1

alejω0 ln + e(n). (1)

Definitions:

s(n) is voiced speech
e(n) is the noise/stochastic parts
ω0 is the fundamental frequency
ψl = ω0l is the frequency of the l th harmonic
al = Alejφl is the complex amplitude

θ = [ ω0 A1 φ1 · · ·AL φL ]T
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8Harmonic Model

The model can also be written as (with x(n) being a snapshot)

x(n) = Z(n)a + e(n) (2)
= ZDna + e(n) (3)
= Za(n) + e(n), (4)

with the following definitions:

x(n) = [ x(n) · · · x(n + M − 1) ]T

z(ω) = [ 1 ejω · · · ejω(M−1) ]T

Z = [ z(ω0) · · · z(ω0L) ]
D = diag(

[
ejω0 ejω02 . . . ejω0L

]
)

a = [ a1 · · · aL ]T
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9Harmonic Model

The covariance matrix of x(n) is

R = E
{

x(n)xH(n)
}
. (5)

Written in terms of the harmonic model, we get

R = ZE
{

a(n)aH(n)
}

ZH + E
{

e(n)eH(n)
}

(6)

= ZPZH + Q, (7)

which is called the covariance matrix model. Note that often it is
assumed that Q = σ2I.

P is the covariance matrix for the amplitudes, which can be shown to
be (under certain conditions)

P ≈ diag
([

A2
1 · · · A2

L
])
. (8)
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10Harmonic Model

What’s wrong with this model?

I It does not take non-stationarity into account
I Background noise is rarely white (and not always Gaussian)
I The model order is unknown and time-varying
I Even if stationary, signals are not perfectly periodic
I The model does not differentiate between background noise and

unvoiced speech
I It is single-channel

Can this be dealt with? Does it matter?



Section 2

Estimating Parameters
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12Parameter Estimation Bounds

An estimate θ̂i of θi (i.e., the i th element of θ ∈ RP) is unbiased if

E
{
θ̂i

}
= θi ∀θi , (9)

and the difference (if any) is referred to as the bias. The Cramér-Rao
lower bound (CRLB) is then given by

var(θ̂i) ≥
[
I−1(θ)

]
ii , (10)

where the Fisher Information Matrix (FIM) I(θ) is given by

[I(θ)]il = −E
{
∂2 ln p(x;θ)
∂θi∂θl

}
, (11)

with ln p(x;θ) being the log-likelihood function for x ∈ CN .
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13Parameter Estimation Bounds

The CRLBs can be dervied for the harmonic model (for WGN):

var(ω̂0) ≥ 6σ2

N(N2 − 1)
∑L

l=1 A2
l l2

(12)

var(Âl) ≥ σ2

2N
(13)

var(φ̂l) ≥ σ2

2N

(
1
A2

l
+

3l2(N − 1)2∑L
m=1 Amm2(N2 − 1)

)
. (14)

These depend on the following quantity:

PSNR = 10 log10

∑L
l=1 A2

l l2

σ2 [dB]. (15)

For colored noise, pre-whitening should be employed.
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14Parameter Estimation Bounds

Such bounds are useful for a number of reasons:

I An estimator attaining the bound is optimal.
I The bounds tell us how performance can be expected to depend

on various quantities.
I The bounds can be used as benchmarks in simulations.
I Provide us with “rules of thumb”.

Caveat emptor: The CRLB does not accurately predict the
performance of non-linear estimators under adverse conditions.

It is possible to compute exact CRLBs, where no asymptotic
approximations are used. These predict more complicated
phenomena.
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15Parameter Estimation Bounds

It is possible to relate estimation errors to reconstruction errors. Let
the observed signal be given by

x = s(θ) + e (16)

Suppose an estimate θ̂ of θ is used to reconstruct the i th sample as
ŝi = si(θ̂), which can be approximated as

si(θ + ε) ≈ si(θ) +

(
∂si(θ)

∂θ

)H

ε. (17)

The mean squared error (MSE) is then

E
{
(si(θ)− si(θ + ε))2

}
=

(
∂si(θ)

∂θ

)H

E
{
εεH}(∂si(θ)

∂θ

)
. (18)
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16Parameter Estimation Bounds

If a MLE is used (for sufficiently high N), then

ε ∼ N (0, I−1(θ)), (19)

where I(θ) is the FIM! For Gaussian signals with x ∼ N (s(θ),Q)
where Q is the noise covariance matrix, the FIM is given by

[I(θ)]nm =
∂sH(θ)

∂θn
Q−1 ∂s(θ)

∂θm
. (20)

The MSE can then be seen to be

E
{
(si(θ)− si(θ + ε))2

}
=

(
∂si(θ)

∂θ

)H

I−1(θ)

(
∂si(θ)

∂θ

)
. (21)
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17Maximum Likelihood Method

For Gaussian signals, the likelihood function is

p(x(n);θ) =
1

πMdet(Q)
e−(x(n)−Za(n))H Q−1(x(n)−Za(n)). (22)

If the noise is i.i.d., the likelihood of {x(n)}G−1
n=0 can be written as

p({x(n)};θ) =
G−1∏
n=0

p(x(n);θ). (23)

The log-likelihood function is L(θ) = ln p({x(n)};θ) and the maximum
likelihood estimator (MLE) is

θ̂ = arg maxL(θ). (24)
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18Maximum Likelihood Method

For white Gaussian noise (Q = σ2I) with M = N the log-likelihood
function is

L(θ) = −N lnπ − N lnσ2 − 1
σ2 ‖x− Za‖2

2. (25)

The concentrated MLE is given by

ω̂0 = arg max
ω0
L(ω0) = arg max

ω0
xHZ

(
ZHZ

)−1
ZHx (26)

≈ arg max
ω0

L∑
l=1

∣∣∣∣∣
N−1∑
n=0

x(n)e−jω0 ln

∣∣∣∣∣
2

. (27)

This can be computed using an FFT (i.e., using harmonic
summation)!



Mads Græsbøll Christensen | Statistical Parametric Speech Processing

19Subspace Method

Recall that the model is

x(n) = Za(n) + e(n), (28)

and that the covariance matrix then is

R =E
{

x(n)xH(n)
}
= ZPZH + σ2I, (29)

where ZPZH has rank L and

P = diag
(
[ A2

1 · · · A2
L ]
)
.
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20Subspace Method

Let R = UΛUH be the EVD of the R, and let G be formed as

G =
[

uL+1 · · · uM
]

(30)

i.e., from the eigenvectors uk corresponding to the M − L smallest
eigenvalues. Then we have that ZHG = 0.

By measuring the angles between subspaces, we can obtain an
estimate as

ω̂0 = arg min
ω0
‖ZHG‖2

F = arg min
ω0

L∑
l=1

‖zH(ω0l)G‖2
2. (31)

This maximizes the angles between the subspaces R(Z) and R(G).
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21Filtering Method

Let the output signal y(n) of a filter having coefficients h(n) be
defined as

y(n) =
M−1∑
m=0

h(m)x(n −m) = hHx(n), (32)

with M ≤ N and where h is a vector formed from {h(n)}. The output
power is then E

{
|y(n)|2

}
= hHRh.

The filtered output can be seen to be

hHx(n) = hHZDna + hHe. (33)

If hHZ = 1T with 1 = [ 1 · · · 1 ]T the voiced speech would pass
undistorted and the noise term hHe could be minimized!
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22Filtering Method

We would thus like to design a filter as

min
h

hHRh s.t. hHZ = 1T . (34)

This has the solution

h = R−1Z
(
ZHR−1Z

)−1
1. (35)

We can use this filter to estimate the pitch as

ω̂0 = arg max
ω0

1H (ZHR−1Z
)−1

1. (36)
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23Comments

I These methods are more robust to noise than non-parametric
methods (YIN stops working below 10 dB, these work for -5 dB).

I They are better for low fundamental frequencies too and get
better for higher SNR and N.

I The model order varies and has to be found on a per segment
basis.

I Fast implementations that make the exact NLS as fast as
harmonic summation exist.

I Colored noise can be dealt with.
I They can be extended to multiple pitches, although not always

trivially.



Section 3

Some Examples
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25Multi-Channel Modeling
Introduction

I A myriad of different pitch estimators exist, but very few have
been proposed for multiple channels except a few heuristic ones.

I We will now take a look at a method for multi-channel pitch
estimation based on a parametric model.

I The signals in the various channels share the same fundamental
frequency but can have different amplitudes, phases, and noise
characteristics.

I This means that the model allows for different conditions in the
various channels!
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26Multi-Channel Modeling
Signal Model

The method operates on snapshots xk (n) ∈ CM for the k th channel.

These are modeled as sums of sinusoids in Gaussian noise ek with
covariance Qk , i.e.,

xk (n) = Z(n)ak + ek (n), (37)

with ak = [ Ak,1ejφk,1 · · · Ak,Lejφk,L ]T . Let θk be the parameter vector
for the k th channel. The likelihood function is then

p(xk (n);θk ) =
1

πMdet(Qk )
e−eH

k (n)Q
−1
k ek (n). (38)



Mads Græsbøll Christensen | Statistical Parametric Speech Processing

27Multi-Channel Modeling
Signal Model

If the deterministic part is stationary and ek (n) is i.i.d. over n and
independent over k , the combined likelihood is

p({xk (n)}; {θk}) =
K∏

k=1

1
πMGdet(Qk )G e−

∑G−1
n=0 eH

k (n)Q
−1
k ek (n). (39)

For simplicity, we assume that the noise is white in each channel but
has different σ2

k , i.e., Qk = σ2
k I.

The log-likelihood function then reduces to

ln p({xk (n)}; {θk}) = −GM
K∑

k=1

ln (πσ2
k )−

K∑
k=1

G−1∑
n=0

‖ek (n)‖2

σ2
k

. (40)
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28Multi-Channel Modeling
Estimator

The MLE of the amplitudes for channel k are

âk =

(
G−1∑
n=0

ZH(n)Z(n)

)−1 G−1∑
n=0

ZH(n)xk (n). (41)

This can be used to form a noise variance estimate as

σ̂2
k =

1
GM

G−1∑
n=0

‖êk (n)‖2 =
1

GM

G−1∑
n=0

‖xk (n)− Z(n)âk‖2. (42)

This yields the following log-likelihood for channel k at time n

ln p(xk (n);ω0) = −M lnπ −M ln σ̂2
k .
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29Multi-Channel Modeling
Estimator

For all n and k , this yields

ln p({xk (n)};ω0) = −GMK lnπ −GM
K∑

k=1

ln σ̂2
k . (43)

The maximum likelihood estimator (MLE) can finally be stated as

ω̂0 = arg min
ω0

K∑
k=1

ln σ̂2
k . (44)

This estimator can then be approximated as

ω̂0 = arg min
ω0

K∑
k=1

ln
(
‖xk‖2 − 1

N
‖ZHxk‖2

)
, (45)

where xk = xk (0) for M = N. This can be computed using FFTs.
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30Multi-Channel Modeling
Experiments
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Figure: Gross error rate for (left) symmetrical noise level and (right)
asymmetrical noise level (i.e., different noise levels).
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31Comments

I As we have seen, it was fairly straightforward to extend the MLE
to multiple channels.

I It works well and under very general conditions.
I It is fast too.
I Easy to build in more specific knowledge, like array structure,

nearfield, TDOAs, binaural setups.
I The multi-channel model contains the usual broadband model as

a special case with ω0 = 2π/N.
I Can be used for pitch/DOA estimation and model-based

beamforming.
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32Noise Reduction
Introduction

I The harmonic signal model has been used for noise reduction in
various ways, like the traditional comb filters.

I We have seen how adaptive and optimal filters can be used for
pitch estimation.

I The same principle can be used for finding noise reduction filters.
I Some interesting and well-known special cases can be obtained

from these filters.
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33Noise Reduction
Filter Design

As we saw earlier, we get the following model when a filter h is
applied to the observed signal x(n):

ŝ(n) = hHx(n) = hHZDna + hHe. (46)

This comprises two terms:

I The filtered voiced speech hHZDna
I The filtered noise hHe

If hHZ = 1T then hHZDna =
∑L

l=1 alejω0 ln while E{|hHe|2} = hHQh is
minimized, we have distortionless optimal noise reduction!
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34Noise Reduction
Filter Design

A distortionless filter should have hHZ = 1T and should minimize the
residual noise, i.e.,

min
h

hHQ̂h s.t. ZHh = 1 (47)

The solution can be shown to be

ĥ = Q̂−1Z
(

ZHQ̂−1Z
)−1

1. (48)

with Q̂ being a particular noise covariance matrix estimate.

These filters are adaptive, optimal comb filters! Unlike the normally
used Wiener filter, these do not distort the desired signal.
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35Noise Reduction
Noise Covariance Matrix

We seek to find a filter such that the MSE is minimized:

MSE =
1
G

N−1∑
n=M−1

∣∣∣∣∣y(n)−
L∑

l=1

alejω0 ln

∣∣∣∣∣
2

=
1
G

N−1∑
n=M−1

|hHx(n)− aHw(n)|2,

with w(n) =
[

ejω01n · · · ejω0Ln
]T . Solving for the amplitudes, we get

MSE = hH
(

R̂−GHW−1G
)

h , hHQ̂h, (49)

where G = 1
G

∑N−1
n=M−1 w(n)xH(n) and W = 1

G

∑N−1
n=M−1 w(n)wH(n).

Thus we can estimate Q as Q̂ = R̂−GHW−1G!



Mads Græsbøll Christensen | Statistical Parametric Speech Processing

36Noise Reduction
Special Cases

Special cases:

I Setting W = I yields the usual noise covariance matrix estimate.
I Capon-like filters can be obtained from Q̂ = R̂, i.e.,

ĥ = R̂−1Z
(

ZHR̂−1Z
)−1

1.

I Setting R̂ = σ2I yields ĥ = Z
(
ZHZ

)−1 1.

I Noting that limM→∞MZ
(
ZHZ

)−1
= Z, we get ĥ = 1

M Z1.
I Binary masking can also be obtained using these principles.
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37Noise Reduction
Examples
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Figure: The original voiced speech signal and the estimated pitch.
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38Noise Reduction
Examples
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Figure: The extracted signal and the difference between the two signals, i.e.,
the part of the signal that was not extracted.
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39Noise Reduction
Examples
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Figure: The voiced speech signal of sources 1 and 2.
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40Noise Reduction
Examples
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Figure: The mixture of the two signals and the estimated pitch tracks for
source 1 (dashed) and 2 (solid).
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41Noise Reduction
Examples
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Figure: The estimate of sources 1 and 2 obtained from the mixture.
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42Comments

I We have seen how the harmonic model can be used for
designing filters for noise reduction.

I The filters are disortionless, i.e., they let the signal of interest
pass undistorted.

I Meanwhile, the noise is attenuated as much as possible.
I The resulting filters are thus optimal in terms of output SNR and

minimum distortion!
I They do not require a priori knowledge of noise statistics.
I They can be generalized to multiple channels.
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43Non-Stationary Speech
Introduction

I Parametric methods based on the harmonic model have proven
to overcome the problems of correlation-based methods.

I However, as mentioned earlier, there might be concerns about
the stationarity within segments.

I To investigate whether this is a problem, we will take a closer
look at the harmonic chirp model and derive an estimator for
determining its parameters.
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44Non-Stationary Speech
Signal Model

For a segment of a speech signal with n = n0, . . . ,n0 + N − 1 the new
harmonic chirp model is given by

x(n) =
L∑

l=1

Alejθl (n) + e(n) (50)

where

I L is the number of harmonics (assumed known).
I Al the l th is the amplitude.
I θl(n) is the instantaneous phase of the l th harmonic.
I e(n) are the stochastic parts of the observed signal.
I n0 is the start index.
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45Non-Stationary Speech
Signal Model

The instantaneous phase θl(·) is given by

θl(t) =
∫ t

0
lω0(τ)dτ + φl , (51)

where ω0(t) is the time-varying pitch and φl is the phase of the l th
harmonic. In the harmoic model (HM) we have that ωl(t) = lω0.

If the pitch is slowly varying, i.e., ω0(t) = α0t + ω0, we get

θl(t) =
1
2
α0lt2 + ω0lt + φl , (52)

where α0 is the fundamental chirp rate.

The resulting model is called the harmonic chirp model (HCM).
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46Non-Stationary Speech
NLS Estimator

Define a vector with n0 = −(N − 1)/2 as

x =
[
x(n0) x(n0 + 1) . . . x(n0 + N − 1)

]
. (53)

and a matrix as

Z =
[
z(ω0, α0) z(2ω0,2α0) . . . z(Lω0,Lα0)

]
, (54)

with columns

z(lω0, lα0) =
[
ej( 1

2α0 ln2
0+ω0 ln0) . . . ej( 1

2α0 l(n0+N−1)2+ω0 l(n0+N−1))
]T
.

For convenience, we introduce Πω0,α0 = Z
(
ZHZ

)−1 ZH .
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47Non-Stationary Speech
NLS Estimator

As before, the nonlinear least squares (NLS) estimator can be used:

{α̂0, ω̂0} = arg min
α0,ω0

‖x− Z
(
ZHZ

)−1
ZHx‖2. (55)

We solve this iteratively as follows (with i being the iteration index).
First obtain an estimate α̂(i)

0 from ω̂
(i−1)
0 for i = 1,2, . . . as

α̂
(i)
0 = arg max

α0

{
xHΠ

ω̂
(i−1)
0 ,α0

x
}
, (56)

and then update the estimate of the fundamental frequency, ω0, as

ω̂
(i)
0 = arg max

ω0

{
xHΠ

ω0,α̂
(i)
0

x
}
. (57)

This is then repeated for i =,1,2, . . . until convergence. We initialize
with α(0)

0 = 0.
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48Non-Stationary Speech
Experiments
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Figure: Spectrum of harmonic model, harmonic chirp model, and an
approximation.
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49Non-Stationary Speech
Experiments

Figure: Histogram of differences in pitch estimates (left) and reconstruction
SNRs (right) between HM and HCM for 30 sentences.
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50Comments

I As we have seen, it is quite easy to account for non-stationarity.
I Although the differences in pitch estimates are small, they may

matter.
I There exists fast implementations for the exact NLS for the

harmonic chirp model too!
I It is also possible to use HCM with the distortionless filters,

meaning we can design filters that account for the
non-stationarity of speech.



Section 4

Discussion and Applications
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52Summary

We have seen how

I the problem of finding the parameters of the harmonic model can
be analyzed.

I the parameters of the harmonic model can be found in various
ways.

I the harmonic model and its estimators can be extended to
multiple channels under quite general conditions.

I the harmonic model can be used for designing optimal and
distortionless filters that do not require knowledge of noise
statistics.

I it is fairly straighforward to take the non-stationary nature of
speech into account.
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53Applications

These ideas are/can be used in many applications, including:

I Hearing aids
I Voice over IP
I Telecommuncation
I Reproduction systems
I Voice analysis
I Intelligence, law enforcement, defense
I Music equipment/software
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54Some Other Results

I Parametric models can be used for speech/audio compression.
I Model-based interpolation/extrapolation can be used for packet

losses/corrupt data.
I Feedback cancellation can be improved using a model of the

near-end signal.
I Beamforming can be improved with the model-based approach.
I Jointly optimal segmentation and parameter estimates can be

found with dynamic programming.
I Optimal filters can be designed for the chirp model too.
I We have recently shown that fast implementations can be found!
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55Conclusion

I Parametric models have shown promise for several problems,
but they are not (yet) widespread.

I An argument against the usage of such models is that they do
not take various phenomena into account.

I However, we can only have this discussion because the
assumptions are explicit.

I And it is often fairly easy to improve the model and methods, if
needed.

I There are many more speech processing problems that could
probably benefit from this approach!

I These include applications with multiple channels, adverse
conditions or where the fine details matter.
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